login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A112651
Numbers k such that k^2 == k (mod 11).
4
0, 1, 11, 12, 22, 23, 33, 34, 44, 45, 55, 56, 66, 67, 77, 78, 88, 89, 99, 100, 110, 111, 121, 122, 132, 133, 143, 144, 154, 155, 165, 166, 176, 177, 187, 188, 198, 199, 209, 210, 220, 221, 231, 232, 242, 243, 253, 254, 264, 265, 275, 276, 286, 287, 297, 298
OFFSET
1,3
COMMENTS
Numbers that are congruent to {0,1} (mod 11). - Philippe Deléham, Oct 17 2011
FORMULA
a(n) = 11*n - a(n-1) - 21 (with a(1)=0). - Vincenzo Librandi, Nov 13 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 11*n/2 - 31/4 - 9*(-1)^n/4.
G.f.: x^2*(1+10*x) / ( (1+x)*(x-1)^2 ). (End)
a(n+1) = Sum_{k>=0} A030308(n,k)*A005015(k-1) with A005015(-1)=1. - Philippe Deléham, Oct 17 2011
EXAMPLE
12 is a term because 12*12 = 144 == 1 (mod 11) and 12 == 1 (mod 11).
MAPLE
m = 11 for n = 1 to 300 if n^2 mod m = n mod m then print n; next n
MATHEMATICA
Select[Range[0, 300], PowerMod[#, 2, 11]==Mod[#, 11]&] (* or *) LinearRecurrence[ {1, 1, -1}, {0, 1, 11}, 60] (* Harvey P. Dale, Apr 19 2015 *)
PROG
(PARI) a(n)=11*n/2-31/4-9*(-1)^n/4 \\ Charles R Greathouse IV, Oct 16 2015
CROSSREFS
Cf. A010880 (n mod 11), A070434 (n^2 mod 11).
Sequence in context: A367340 A101233 A118512 * A215027 A331194 A105945
KEYWORD
easy,nonn
AUTHOR
Jeremy Gardiner, Dec 28 2005
EXTENSIONS
Edited by N. J. A. Sloane, Aug 19 2010
Definition clarified by Harvey P. Dale, Apr 19 2015
STATUS
approved