OFFSET
1,3
COMMENTS
Numbers that are congruent to {0,1} (mod 11). - Philippe Deléham, Oct 17 2011
LINKS
FORMULA
a(n) = 11*n - a(n-1) - 21 (with a(1)=0). - Vincenzo Librandi, Nov 13 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 11*n/2 - 31/4 - 9*(-1)^n/4.
G.f.: x^2*(1+10*x) / ( (1+x)*(x-1)^2 ). (End)
EXAMPLE
12 is a term because 12*12 = 144 == 1 (mod 11) and 12 == 1 (mod 11).
MAPLE
m = 11 for n = 1 to 300 if n^2 mod m = n mod m then print n; next n
MATHEMATICA
Select[Range[0, 300], PowerMod[#, 2, 11]==Mod[#, 11]&] (* or *) LinearRecurrence[ {1, 1, -1}, {0, 1, 11}, 60] (* Harvey P. Dale, Apr 19 2015 *)
PROG
(PARI) a(n)=11*n/2-31/4-9*(-1)^n/4 \\ Charles R Greathouse IV, Oct 16 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jeremy Gardiner, Dec 28 2005
EXTENSIONS
Edited by N. J. A. Sloane, Aug 19 2010
Definition clarified by Harvey P. Dale, Apr 19 2015
STATUS
approved