login
A271354
Products of two distinct Fibonacci numbers, both greater than 1.
10
6, 10, 15, 16, 24, 26, 39, 40, 42, 63, 65, 68, 102, 104, 105, 110, 165, 168, 170, 178, 267, 272, 273, 275, 288, 432, 440, 442, 445, 466, 699, 712, 714, 715, 720, 754, 1131, 1152, 1155, 1157, 1165, 1220, 1830, 1864, 1869, 1870, 1872, 1885, 1974, 2961, 3016
OFFSET
1,1
COMMENTS
For n > 5, the numbers F(i)*F(j) satisfying F(n-1) <= F(i)*F(j) <= F(n) also satisfy F(n-1) < F(i)*F(j) < F(n). They are the numbers for which i + j = n + 1, where 2 < i < j, so that the number of such F(i)*F(j) is floor(n/2) - 2. The least is 3*F(n-3) and the greatest is 2*F(n-2).
LINKS
Clark Kimberling, Orderings of products of Fibonacci numbers, Fibonacci Quarterly 42:1 (2004), pp. 28-35.
FORMULA
A004526(n) = number of numbers a(k) between F(n+3) and F(n+4), where F = A000045 (Fibonacci numbers).
EXAMPLE
2*3 = 6, 2*5 = 10, 3*5 = 15, 2*8 = 16.
MATHEMATICA
z = 200; f[n_] := Fibonacci[n];
Take[Sort[Flatten[Table[f[m] f[n], {n, 3, z}, {m, 3, n - 1}]]], 100]
PROG
(PARI) list(lim)=my(v=List, F=vector(A130233(lim\2), k, fibonacci(k)), t); for(i=2, #F, for(j=1, i-1, t=F[i]*F[j]; if(t>lim, break); listput(v, t))); Set(v) \\ Charles R Greathouse IV, Oct 07 2016
CROSSREFS
Cf. A000045, A004526, A094565, A271356 (difference sequence), subsequence of A049997.
Sequence in context: A339116 A151972 A094564 * A315240 A315241 A166160
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, May 02 2016
STATUS
approved