login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271357
a(n) = k*Fibonacci(2*n+1) + (k+1)*Fibonacci(2*n), where k=3.
3
3, 10, 27, 71, 186, 487, 1275, 3338, 8739, 22879, 59898, 156815, 410547, 1074826, 2813931, 7366967, 19286970, 50493943, 132194859, 346090634, 906077043, 2372140495, 6210344442, 16258892831, 42566334051, 111440109322, 291753993915, 763821872423, 1999711623354
OFFSET
0,1
FORMULA
G.f.: (3+x) / (1-3*x+x^2).
a(n) = 3*a(n-1)-a(n-2) for n>1.
a(n) = (2^(-2-n)*((9-sqrt(5))*(3+sqrt(5))^(n+1) - (9+sqrt(5))*(3-sqrt(5))^(n+1))) / sqrt(5).
a(n) = 4*Fibonacci(2*n+2) - Fibonacci(2*n+1).
MATHEMATICA
Table[3Fibonacci[2n+1]+4Fibonacci[2n], {n, 0, 30}] (* or *) LinearRecurrence[ {3, -1}, {3, 10}, 30] (* Harvey P. Dale, Apr 05 2019 *)
PROG
(PARI) a(n) = 3*fibonacci(2*n+1) + 4*fibonacci(2*n)
(PARI) Vec((3+x)/(1-3*x+x^2) + O(x^50))
(Magma) k:=3; [k*Fibonacci(2*n+1)+(k+1)*Fibonacci(2*n): n in [0..30]]; // Bruno Berselli, Apr 06 2016
CROSSREFS
Cf. A000045.
Cf. A001906 (k=0), A002878 (k=1), A100545 (k=2, without the initial 2), this sequence (k=3), A271358 (k=4), A271359 (k=5).
Sequence in context: A378623 A316587 A309300 * A085948 A000471 A000501
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Apr 05 2016
EXTENSIONS
Changed offset and adapted definition, programs and formulas by Bruno Berselli, Apr 06 2016
STATUS
approved