The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A271355 Triangular array:  T(n,k) = |round[(r^n)*(s^k)|, where r = golden ratio = (1+ sqrt(5))/2, s = (1 - sqrt(5))/2, 1 < = k <= n, n > = 0. 2
 1, 2, 1, 3, 2, 1, 4, 3, 2, 1, 7, 4, 3, 2, 1, 11, 7, 4, 3, 2, 1, 18, 11, 7, 4, 3, 2, 1, 29, 18, 11, 7, 4, 3, 2, 1, 47, 29, 18, 11, 7, 4, 3, 2, 1, 76, 47, 29, 18, 11, 7, 4, 3, 2, 1, 123, 76, 47, 29, 18, 11, 7, 4, 3, 2, 1, 199, 123, 76, 47, 29, 18, 11, 7, 4, 3 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Row n consists of the first n numbers of A169985 = (1,2,3,4,7,... ) in reverse order; these are the Lucas numbers, A000032, with order of initial two terms reversed.  Every column of the triangle is A169985. LINKS Clark Kimberling, Table of n, a(n) for n = 1..10000 FORMULA T(n,k) = |round[(r^n)*(s^k)|, where r = golden ratio = (1+ sqrt(5))/2, s = (1 - sqrt(5))/2, 1 < = k <= n, n > = 0. T(k+j-1,j) = A000032(k) = k-th Lucas number, for k >= 2. EXAMPLE First six rows: 1 2   1 3   2   1 4   3   2   1 7   4   3   2   1 11  7   4   3   2   1 MATHEMATICA r = N[(1 + Sqrt[5])/2, 100]; s = N[(1 - Sqrt[5])/2, 100]; t = Table[Abs[Round[(r^n)*(s^k)]], {n, 0, 15}, {k, 1, n}]; Flatten[t]  (* A271355, sequence *) TableForm[t]  (* A271355, array *) CROSSREFS Cf. A169985, A000032, A000045, A104762 Sequence in context: A200082 A052310 A052313 * A211230 A049085 A193173 Adjacent sequences:  A271352 A271353 A271354 * A271356 A271357 A271358 KEYWORD nonn,easy,tabl AUTHOR Clark Kimberling, May 01 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 5 18:48 EDT 2020. Contains 334854 sequences. (Running on oeis4.)