OFFSET
2,1
COMMENTS
A squarefree semiprime is a product of any two distinct prime numbers.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 2..1276 (first 50 rows)
FORMULA
T(n,k) = prime(n) * prime(k) for k < n.
EXAMPLE
Triangle begins:
6
10 15
14 21 35
22 33 55 77
26 39 65 91 143
34 51 85 119 187 221
38 57 95 133 209 247 323
46 69 115 161 253 299 391 437
58 87 145 203 319 377 493 551 667
62 93 155 217 341 403 527 589 713 899
MATHEMATICA
Table[Prime[i]*Prime[j], {i, 2, 10}, {j, i-1}]
PROG
(PARI) row(n) = {prime(n)*primes(n-1)}
{ for(n=2, 10, print(row(n))) } \\ Andrew Howroyd, Jan 19 2023
CROSSREFS
A339194 gives row sums.
A100484 is column k = 1.
A001748 is column k = 2.
A001750 is column k = 3.
A006094 is column k = n - 1.
A090076 is column k = n - 2.
A319613 is the central column k = 2*n.
A087112 is the not necessarily squarefree version.
A338905 is a different triangle of squarefree semiprimes.
A001358 lists semiprimes.
A005117 lists squarefree numbers.
A024697 is the sum of semiprimes of weight n.
A025129 is the sum of squarefree semiprimes of weight n.
A332765 gives the greatest squarefree semiprime of weight n.
A338898/A338912/A338913 give the prime indices of semiprimes, with product A087794, sum A176504, and difference A176506.
A338904 groups semiprimes by weight.
Cf. A000040, A001221, A014342, A098350, A112798, A168472, A320656, A338901, A339003, A339114/A339115.
Subsequence of A019565.
KEYWORD
AUTHOR
Gus Wiseman, Dec 01 2020
EXTENSIONS
Offset corrected by Andrew Howroyd, Jan 19 2023
STATUS
approved