login
A024697
a(n) = p(1)p(n) + p(2)p(n-1) + ... + p(k)p(n+1-k), where k = [ (n+1)/2 ], p = A000040 = the primes.
18
4, 6, 19, 29, 68, 94, 177, 231, 400, 484, 753, 903, 1340, 1552, 2157, 2489, 3352, 3784, 5013, 5515, 7052, 7758, 9773, 10575, 13076, 14076, 17023, 18339, 21876, 23414, 27715, 29437, 34570, 36500, 42335, 44731, 51560, 54198, 61955, 65051, 73700, 77402, 87293
OFFSET
1,1
COMMENTS
a(n) = A025129(n) for even n. - M. F. Hasler, Apr 06 2014
LINKS
MAPLE
A024697:=n->sum( ithprime(k)*ithprime(n-k+1), k=1..(n+1)/2 ); seq(A024697(n), n=1..50); # Wesley Ivan Hurt, Apr 06 2014
MATHEMATICA
Table[Sum[Prime[k] Prime[n - k + 1], {k, (n + 1)/2}], {n, 50}] (* Wesley Ivan Hurt, Apr 06 2014 *)
PROG
(PARI) A024697(n)=sum(k=1, (n+1)\2, prime(k)*prime(n-k+1)) \\ M. F. Hasler, Apr 06 2014
(Haskell)
a024697 n = a024697_list !! (n-1)
a024697_list = f (tail a000040_list) [head a000040_list] 2 where
f (p:ps) qs k = sum (take (div k 2) $ zipWith (*) qs $ reverse qs) :
f ps (p : qs) (k + 1)
-- Reinhard Zumkeller, Apr 07 2014
CROSSREFS
Sequence in context: A013160 A153777 A034189 * A024874 A095383 A116383
KEYWORD
nonn
EXTENSIONS
Name edited and values double-checked by M. F. Hasler, Apr 06 2014
STATUS
approved