|
|
A024700
|
|
a(n) = (prime(n+2)^2 - 1)/3.
|
|
4
|
|
|
8, 16, 40, 56, 96, 120, 176, 280, 320, 456, 560, 616, 736, 936, 1160, 1240, 1496, 1680, 1776, 2080, 2296, 2640, 3136, 3400, 3536, 3816, 3960, 4256, 5376, 5720, 6256, 6440, 7400, 7600, 8216, 8856, 9296, 9976, 10680, 10920, 12160, 12416, 12936, 13200, 14840, 16576, 17176
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
This sequence is also: Numbers n such that k is prime and its square is of the form 3*n + 1 (i.e., k^2 = 3*n + 1). For this case, the sequence is to be prepended with a(0) = 1. - G. C. Greubel, Sep 18 2016
|
|
LINKS
|
|
|
FORMULA
|
|
|
MATHEMATICA
|
Select[Range[2, 10000], PrimeQ[Sqrt[3*#+1]] &] (* G. C. Greubel, Sep 18 2016 *)
|
|
PROG
|
(Magma) [(NthPrime(n+2)^2-1)/3: n in [1..50]]; // Bruno Berselli, May 22 2013
(PARI) a(n) = (prime(n+2)^2-1)/3; \\ Altug Alkan, Sep 18 2016
(SageMath) [(n^2 -1)/3 for n in prime_range(4, 301)] # G. C. Greubel, May 02 2024
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|