login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A038578
Number of self-avoiding closed walks from 0 of area n in strip Z X {-1,0,1}.
7
1, 8, 16, 40, 88, 184, 388, 800, 1628, 3288, 6584, 13096, 25904, 50984, 99916, 195072, 379572, 736360, 1424672, 2749672, 5295240, 10176856, 19522644, 37387424, 71487756, 136492216, 260255304, 495618408, 942731360, 1791241544, 3399976348
OFFSET
0,2
REFERENCES
J. Labelle, Self-avoiding walks and polyominoes in strips, Bull. ICA, 23 (1998), 88-98.
FORMULA
G.f.: -3+4(1-x^2+x^4)/(1-x-x^2-x^3)^2 [Labelle]. - Emeric Deutsch, Apr 29 2004
MATHEMATICA
LinearRecurrence[{2, 1, 0, -3, -2, -1}, {1, 8, 16, 40, 88, 184, 388}, 31] (* Georg Fischer, Jan 28 2021 *)
PROG
(PARI) Vec(-3+4*(1-x^2+x^4)/(1-x-x^2-x^3)^2 + O(x^40)) \\ Michel Marcus, Jan 28 2021
CROSSREFS
Cf. A022444.
Sequence in context: A024700 A108576 A052207 * A348925 A155110 A245419
KEYWORD
nonn,walk,easy
AUTHOR
EXTENSIONS
More terms from Emeric Deutsch, Apr 29 2004
STATUS
approved