OFFSET
0,7
COMMENTS
Row lengths of table A060441. - Reinhard Zumkeller, Aug 30 2014
LINKS
Amiram Eldar, Table of n, a(n) for n = 0..1408 (terms 0..1000 from T. D. Noe derived from Kelly's data)
Blair Kelly, Fibonacci and Lucas Factorizations.
Douglas Lind, Problem H-145, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 6, No. 6 (1968), p. 351; Factor Analysis, Solution to Problem H-145 by the proposer, ibid., Vol. 8, No. 4 (1970), pp. 386-387.
Eric Weisstein's World of Mathematics, Fibonacci Number.
FORMULA
a(n) >= A001222(n) - 1 (Lind, 1968). - Amiram Eldar, Feb 02 2022
EXAMPLE
a(12) = 6 because Fibonacci(12) = 144 = 2^4 * 3^2 has 6 prime factors.
MAPLE
with(numtheory):with(combinat):a:=proc(n) if n=0 then 0 else bigomega(fibonacci(n)) fi end: seq(a(n), n=0..102); # Zerinvary Lajos, Apr 11 2008
MATHEMATICA
Join[{0, 0}, Table[Plus@@(Transpose[FactorInteger[Fibonacci[n]]][[2]]), {n, 3, 102}]]
Join[{0}, PrimeOmega[Fibonacci[Range[110]]]] (* Harvey P. Dale, Apr 14 2018 *)
PROG
(Haskell)
a038575 n = if n == 0 then 0 else a001222 $ a000045 n
-- Reinhard Zumkeller, Aug 30 2014
(PARI) a(n)=bigomega(fibonacci(n)) \\ Charles R Greathouse IV, Sep 14 2015
(Python)
from sympy import primeomega, fibonacci
def a(n): return 0 if n == 0 else primeomega(fibonacci(n))
print([a(n) for n in range(103)]) # Michael S. Branicky, Feb 02 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved