login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A038575
Number of prime factors of n-th Fibonacci number, counted with multiplicity.
19
0, 0, 0, 1, 1, 1, 3, 1, 2, 2, 2, 1, 6, 1, 2, 3, 3, 1, 5, 2, 4, 3, 2, 1, 9, 3, 2, 4, 4, 1, 7, 2, 4, 3, 2, 3, 10, 3, 3, 3, 6, 2, 7, 1, 5, 5, 3, 1, 12, 3, 6, 3, 4, 2, 8, 4, 7, 5, 3, 2, 12, 2, 3, 5, 6, 3, 7, 3, 5, 5, 7, 2, 14, 2, 4, 6, 5, 4, 8, 2, 9, 7, 3, 1, 13, 4, 3, 4, 9, 2, 12, 5, 6, 4, 2, 6, 16, 4, 5, 6, 10, 2, 8
OFFSET
0,7
COMMENTS
Row lengths of table A060441. - Reinhard Zumkeller, Aug 30 2014
LINKS
Amiram Eldar, Table of n, a(n) for n = 0..1408 (terms 0..1000 from T. D. Noe derived from Kelly's data)
Douglas Lind, Problem H-145, Advanced Problems and Solutions, The Fibonacci Quarterly, Vol. 6, No. 6 (1968), p. 351; Factor Analysis, Solution to Problem H-145 by the proposer, ibid., Vol. 8, No. 4 (1970), pp. 386-387.
Eric Weisstein's World of Mathematics, Fibonacci Number.
FORMULA
For n > 0: a(n) = A001222(A000045(n)). - Reinhard Zumkeller, Aug 30 2014
a(n) >= A001222(n) - 1 (Lind, 1968). - Amiram Eldar, Feb 02 2022
EXAMPLE
a(12) = 6 because Fibonacci(12) = 144 = 2^4 * 3^2 has 6 prime factors.
MAPLE
with(numtheory):with(combinat):a:=proc(n) if n=0 then 0 else bigomega(fibonacci(n)) fi end: seq(a(n), n=0..102); # Zerinvary Lajos, Apr 11 2008
MATHEMATICA
Join[{0, 0}, Table[Plus@@(Transpose[FactorInteger[Fibonacci[n]]][[2]]), {n, 3, 102}]]
Join[{0}, PrimeOmega[Fibonacci[Range[110]]]] (* Harvey P. Dale, Apr 14 2018 *)
PROG
(Haskell)
a038575 n = if n == 0 then 0 else a001222 $ a000045 n
-- Reinhard Zumkeller, Aug 30 2014
(PARI) a(n)=bigomega(fibonacci(n)) \\ Charles R Greathouse IV, Sep 14 2015
(Python)
from sympy import primeomega, fibonacci
def a(n): return 0 if n == 0 else primeomega(fibonacci(n))
print([a(n) for n in range(103)]) # Michael S. Branicky, Feb 02 2022
CROSSREFS
Cf. A022307 (number of distinct prime factors), A086597 (number of primitive prime factors).
Cf. also A001222, A000045, A060441.
Sequence in context: A236172 A139381 A225849 * A347430 A346491 A304302
KEYWORD
nonn
AUTHOR
STATUS
approved