login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A139381
McKay-Thompson series of class 10E for the Monster group with a(0) = -3.
2
1, -3, 1, 2, 2, -2, -1, 0, -4, -2, 5, 2, 0, 8, 2, -8, -3, -2, -14, -6, 14, 6, 4, 24, 12, -24, -11, -4, -40, -16, 38, 16, 5, 62, 24, -60, -24, -10, -94, -40, 91, 38, 18, 144, 62, -136, -57, -24, -214, -88, 201, 82, 30, 308, 122, -288, -117, -48, -440, -180, 410
OFFSET
-1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
FORMULA
Expansion of eta(q)^3 * eta(q^5) / eta(q^2) / eta(q^10)^3 in powers of q.
Expansion of q^(-1) * phi(-q) * f(-q) / (psi(q^5) * f(-q^10)) in powers of q where phi(), psi(), f() are Ramanujan theta functions.
Euler transform of period 10 sequence [ -3, -2, -3, -2, -4, -2, -3, -2, -3, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (10 t)) = 20 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A095846.
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = (u + 4) * (20 + 6*v) - (v + 4) * (20 + v - u^2).
G.f.: (1 / x) * Product_{k>0} (1 - x^k)^3 * (1 - x^(5*k)) / ((1 - x^(2*k)) * (1 - x^(10*k))^3).
a(n) = A058101(n) = A132980(n) = A138516(n) unless n=0.
Convolution inverse of A095846.
EXAMPLE
G.f. = 1/q - 3 + q + 2*q^2 + 2*q^3 - 2*q^4 - q^5 - 4*q^7 - 2*q^8 + 5*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ -4 + (1/q) QPochhammer[ q^5, q^10]^5 QPochhammer[ -q, q], {q, 0, n}]; (* Michael Somos, Sep 07 2015 *)
a[ n_] := SeriesCoefficient[ (1/q) QPochhammer[ q]^3 QPochhammer[ q^5] / (QPochhammer[ q^2] QPochhammer[ q^10]^3), {q, 0, n}]; (* Michael Somos, Sep 07 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x + A)^3 * eta(x^5 + A) / eta(x^2 + A) / eta(x^10 + A)^3, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Apr 15 2008
STATUS
approved