login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A225849
McKay-Thompson series of class 20C for the Monster group with a(0) = 3.
3
1, 3, 1, -2, 2, 2, -1, 0, -4, 2, 5, -2, 0, -8, 2, 8, -3, 2, -14, 6, 14, -6, 4, -24, 12, 24, -11, 4, -40, 16, 38, -16, 5, -62, 24, 60, -24, 10, -94, 40, 91, -38, 18, -144, 62, 136, -57, 24, -214, 88, 201, -82, 30, -308, 122, 288, -117, 48, -440, 180, 410
OFFSET
-1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1) * f(q)^3 / (f(-q^2) * f(-q^5)* f(-q^20)) in powers of q where f() is a Ramanujan theta function.
Expansion of q^(-1) * f(q, q)^2 / (f(q, q^9) * f(q^3, q^7)) in powers of q where f(, ) is Ramanujan's general theta functions.
Expansion of q^(-1) * (phi(q) / phi(q^5))^2 * chi(q^5)^5 / chi(q) in powers of q where phi(), chi() are Ramanujan theta functions.
Expansion of eta(q^2)^8 / ( eta(q)^3 * eta(q^4)^3 * eta(q^5) * eta(q^20)) in powers of q.
Euler transform of period 20 sequence [ 3, -5, 3, -2, 4, -5, 3, -2, 3, -4, 3, -2, 3, -5, 4, -2, 3, -5, 3, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (u - v)^4 - u * (u - 4) * (u - 5) * v * (v - 4) * (v - 5).
G.f.: (1/x) * Product_{k>0} (1 - (-x)^k)^3 / ((1 - x^(2*k)) * (1 - x^(5*k)) * (1 - x^(20*k))).
a(n) = A112159(n) = A145740(n) = A223903(n) unless n=0. a(n) = -(-1)^n * A139381(n).
EXAMPLE
G.f. = 1/q + 3 + q - 2*q^2 + 2*q^3 + 2*q^4 - q^5 - 4*q^7 + 2*q^8 + 5*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 4 + (1/q) QPochhammer[ q^5, q^10]^5 / QPochhammer[ q, q^2], {q, 0, n}];
a[ n_] := SeriesCoefficient[ (1/q) QPochhammer[ -q]^3 / (QPochhammer[ q^2] QPochhammer[ q^5] QPochhammer[ q^20]), {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^2 + A)^8 / ( eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^5 + A) * eta(x^20 + A)), n))};
KEYWORD
sign
AUTHOR
Michael Somos, May 17 2013
STATUS
approved