OFFSET
-1,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = -1..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1) * f(q)^3 / (f(-q^2) * f(-q^5)* f(-q^20)) in powers of q where f() is a Ramanujan theta function.
Expansion of q^(-1) * f(q, q)^2 / (f(q, q^9) * f(q^3, q^7)) in powers of q where f(, ) is Ramanujan's general theta functions.
Expansion of q^(-1) * (phi(q) / phi(q^5))^2 * chi(q^5)^5 / chi(q) in powers of q where phi(), chi() are Ramanujan theta functions.
Expansion of eta(q^2)^8 / ( eta(q)^3 * eta(q^4)^3 * eta(q^5) * eta(q^20)) in powers of q.
Euler transform of period 20 sequence [ 3, -5, 3, -2, 4, -5, 3, -2, 3, -4, 3, -2, 3, -5, 4, -2, 3, -5, 3, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (u - v)^4 - u * (u - 4) * (u - 5) * v * (v - 4) * (v - 5).
G.f.: (1/x) * Product_{k>0} (1 - (-x)^k)^3 / ((1 - x^(2*k)) * (1 - x^(5*k)) * (1 - x^(20*k))).
EXAMPLE
G.f. = 1/q + 3 + q - 2*q^2 + 2*q^3 + 2*q^4 - q^5 - 4*q^7 + 2*q^8 + 5*q^9 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 4 + (1/q) QPochhammer[ q^5, q^10]^5 / QPochhammer[ q, q^2], {q, 0, n}];
a[ n_] := SeriesCoefficient[ (1/q) QPochhammer[ -q]^3 / (QPochhammer[ q^2] QPochhammer[ q^5] QPochhammer[ q^20]), {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^2 + A)^8 / ( eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^5 + A) * eta(x^20 + A)), n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, May 17 2013
STATUS
approved