login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

McKay-Thompson series of class 20C for the Monster group with a(0) = 3.
3

%I #17 Mar 12 2021 22:24:46

%S 1,3,1,-2,2,2,-1,0,-4,2,5,-2,0,-8,2,8,-3,2,-14,6,14,-6,4,-24,12,24,

%T -11,4,-40,16,38,-16,5,-62,24,60,-24,10,-94,40,91,-38,18,-144,62,136,

%U -57,24,-214,88,201,-82,30,-308,122,288,-117,48,-440,180,410

%N McKay-Thompson series of class 20C for the Monster group with a(0) = 3.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A225849/b225849.txt">Table of n, a(n) for n = -1..1000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of q^(-1) * f(q)^3 / (f(-q^2) * f(-q^5)* f(-q^20)) in powers of q where f() is a Ramanujan theta function.

%F Expansion of q^(-1) * f(q, q)^2 / (f(q, q^9) * f(q^3, q^7)) in powers of q where f(, ) is Ramanujan's general theta functions.

%F Expansion of q^(-1) * (phi(q) / phi(q^5))^2 * chi(q^5)^5 / chi(q) in powers of q where phi(), chi() are Ramanujan theta functions.

%F Expansion of eta(q^2)^8 / ( eta(q)^3 * eta(q^4)^3 * eta(q^5) * eta(q^20)) in powers of q.

%F Euler transform of period 20 sequence [ 3, -5, 3, -2, 4, -5, 3, -2, 3, -4, 3, -2, 3, -5, 4, -2, 3, -5, 3, 0, ...].

%F G.f. A(x) satisfies 0 = f(A(x), A(x^3)) where f(u, v) = (u - v)^4 - u * (u - 4) * (u - 5) * v * (v - 4) * (v - 5).

%F G.f.: (1/x) * Product_{k>0} (1 - (-x)^k)^3 / ((1 - x^(2*k)) * (1 - x^(5*k)) * (1 - x^(20*k))).

%F a(n) = A112159(n) = A145740(n) = A223903(n) unless n=0. a(n) = -(-1)^n * A139381(n).

%e G.f. = 1/q + 3 + q - 2*q^2 + 2*q^3 + 2*q^4 - q^5 - 4*q^7 + 2*q^8 + 5*q^9 + ...

%t a[ n_] := SeriesCoefficient[ 4 + (1/q) QPochhammer[ q^5, q^10]^5 / QPochhammer[ q, q^2], {q, 0, n}];

%t a[ n_] := SeriesCoefficient[ (1/q) QPochhammer[ -q]^3 / (QPochhammer[ q^2] QPochhammer[ q^5] QPochhammer[ q^20]), {q, 0, n}];

%o (PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( eta(x^2 + A)^8 / ( eta(x + A)^3 * eta(x^4 + A)^3 * eta(x^5 + A) * eta(x^20 + A)), n))};

%Y Cf. A112159, A145740, A139381, A138516, A132980, A058101, A223903.

%K sign

%O -1,2

%A _Michael Somos_, May 17 2013