login
A347430
Simple continued fraction expansion of Pi^(3/2)/Gamma(3/4)^2.
0
3, 1, 2, 2, 2, 1, 8, 1, 2, 1, 2, 9, 8, 6, 56, 5, 38, 1, 2, 1, 5, 1, 5, 1, 2, 10, 3, 10, 741, 1, 5, 3, 3, 1, 5, 2, 3, 1, 1, 1, 1, 2, 1, 1, 2, 2, 1, 7, 2, 3, 3, 4, 4, 1, 11, 1, 2, 1, 1, 1, 1, 1, 5, 1, 64, 1, 1, 2, 7, 1, 5, 98, 2, 2, 2, 1, 1, 1, 1, 1, 5, 1, 3, 1
OFFSET
0,1
LINKS
M. Parker, What is the area of a Squircle?, Youtube video (2021).
Eric Weisstein's World of Mathematics, Squircle
FORMULA
Equals sqrt(2)*Pi/agm(1,sqrt(2)) (arithmetic-geometric mean).
Equals 8*Gamma(5/4)^2/sqrt(Pi). - Peter Luschny, Sep 02 2021
EXAMPLE
3+1/(1+1/(2+1/(2+1/(2+...)))).
MAPLE
convert(8*GAMMA(5/4)^2/sqrt(Pi), confrac, 84); # Peter Luschny, Sep 02 2021
MATHEMATICA
ContinuedFraction[Pi^(3/2)/Gamma[3/4]^2, 84] (* Michael De Vlieger, Sep 01 2021 *)
PROG
(PARI) contfrac(Pi^1.5/gamma(3/4)^2) \\ Michel Marcus, Sep 02 2021
CROSSREFS
Cf. A175576 for decimal expansion.
Sequence in context: A139381 A225849 A038575 * A346491 A304302 A305516
KEYWORD
nonn,cofr
AUTHOR
Adam Filinovich, Sep 01 2021
STATUS
approved