login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347428
Expansion of g.f. Product_{k>=2} 1/(1-x^phi(k)).
1
1, 1, 4, 4, 14, 14, 40, 40, 106, 106, 254, 254, 582, 582, 1256, 1256, 2620, 2620, 5256, 5256, 10266, 10266, 19482, 19482, 36204, 36204, 65792, 65792, 117496, 117496, 206120, 206120, 356320, 356320, 606912, 606912, 1020848, 1020848, 1695676, 1695676, 2786010
OFFSET
0,3
LINKS
David P. Roberts and Fernando Rodriguez Villegas, Hypergeometric Motives, arXiv:2109.00027 [math.AG], 2021. See (5.2) p. 6.
FORMULA
From Vaclav Kotesovec, Sep 02 2021: (Start)
For n>0, a(n) = A120963(n) - A120963(n-1).
log(a(n)) ~ sqrt(105*zeta(3)*n)/Pi. (End)
MAPLE
with(numtheory):
b:= proc(n) option remember; nops(invphi(n)) end:
g:= proc(n) option remember; `if`(n=0, 1, add(
g(n-j)*add(d*b(d), d=divisors(j)), j=1..n)/n)
end:
a:= n-> g(n)-g(n-1):
seq(a(n), n=0..40); # Alois P. Heinz, Jun 23 2023
MATHEMATICA
nt = 100; (* number of terms *)
f[kmax_] := f[kmax] = CoefficientList[Product[1/(1 - x^EulerPhi[k]), {k, 2, kmax}] + O[x]^nt, x]; f[kmax = nt]; f[kmax += nt];
While[f[kmax] != f[kmax - nt], kmax += nt];
f[kmax] (* Jean-François Alcover, Nov 29 2023 *)
CROSSREFS
Cf. A000010 (phi), A014197, A051894, A120963 (similar g.f.).
Sequence in context: A097335 A255297 A339319 * A361801 A263870 A263796
KEYWORD
nonn
AUTHOR
Michel Marcus, Sep 02 2021
EXTENSIONS
Terms a(16) and beyond corrected by Vaclav Kotesovec, Jun 23 2023, following a suggestion from Georg Fischer
STATUS
approved