login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of g.f. Product_{k>=2} 1/(1-x^phi(k)).
1

%I #34 Nov 29 2023 07:42:52

%S 1,1,4,4,14,14,40,40,106,106,254,254,582,582,1256,1256,2620,2620,5256,

%T 5256,10266,10266,19482,19482,36204,36204,65792,65792,117496,117496,

%U 206120,206120,356320,356320,606912,606912,1020848,1020848,1695676,1695676,2786010

%N Expansion of g.f. Product_{k>=2} 1/(1-x^phi(k)).

%H Vaclav Kotesovec, <a href="/A347428/b347428.txt">Table of n, a(n) for n = 0..10000</a>

%H David P. Roberts and Fernando Rodriguez Villegas, <a href="https://arxiv.org/abs/2109.00027">Hypergeometric Motives</a>, arXiv:2109.00027 [math.AG], 2021. See (5.2) p. 6.

%F From _Vaclav Kotesovec_, Sep 02 2021: (Start)

%F For n>0, a(n) = A120963(n) - A120963(n-1).

%F log(a(n)) ~ sqrt(105*zeta(3)*n)/Pi. (End)

%p with(numtheory):

%p b:= proc(n) option remember; nops(invphi(n)) end:

%p g:= proc(n) option remember; `if`(n=0, 1, add(

%p g(n-j)*add(d*b(d), d=divisors(j)), j=1..n)/n)

%p end:

%p a:= n-> g(n)-g(n-1):

%p seq(a(n), n=0..40); # _Alois P. Heinz_, Jun 23 2023

%t nt = 100; (* number of terms *)

%t f[kmax_] := f[kmax] = CoefficientList[Product[1/(1 - x^EulerPhi[k]), {k, 2, kmax}] + O[x]^nt, x]; f[kmax = nt]; f[kmax += nt];

%t While[f[kmax] != f[kmax - nt], kmax += nt];

%t f[kmax] (* _Jean-François Alcover_, Nov 29 2023 *)

%Y Cf. A000010 (phi), A014197, A051894, A120963 (similar g.f.).

%K nonn

%O 0,3

%A _Michel Marcus_, Sep 02 2021

%E Terms a(16) and beyond corrected by _Vaclav Kotesovec_, Jun 23 2023, following a suggestion from _Georg Fischer_