The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A347425 a(n) = Bernoulli(2*n) * (2*n+1)! if 2*n+1 is a prime, otherwise a(n) = Bernoulli(2*n) * (2*n)!. 1
1, 1, -4, 120, -1344, 3024000, -1576143360, 101708006400, -2522591034163200, 6686974460694528000, -1287307431968882688000, 160078872315904478576640000, -53718579665963356985229312000, 574898901006059006921736192000000, -241364461951740682229320388129587200000 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
LINKS
FORMULA
a(n) is the numerator of Bernoulli(2*n) * (2*n)! (for denominators see A128059).
a(n) is the numerator of (2*n)!^2 * [x^(2*n)] x * coth(x/2) / 2.
a(n) is the numerator of b(2*n) where b(n) = -Sum_{k=1..n} binomial(n,k)^2 * k! * b(n-k) / (k+1), b(0) = 1.
EXAMPLE
Bernoulli(2*n) * (2*n)! = [ 1, 1/3, -4/5, 120/7, -1344, 3024000/11, -1576143360/13, 101708006400, -2522591034163200/17, 6686974460694528000/19, ... ].
MATHEMATICA
a[n_] := If[PrimeQ[2 n + 1], BernoulliB[2 n] (2 n + 1)!, BernoulliB[2 n] (2 n)!]; Table[a[n], {n, 0, 14}]
Table[Numerator[BernoulliB[2 n] (2 n)!], {n, 0, 14}]
Table[Numerator[(2 n)!^2 SeriesCoefficient[x Coth[x/2]/2, {x, 0, 2 n}]], {n, 0, 14}]
b[0] = 1; b[n_] := b[n] = -Sum[Binomial[n, k]^2 k! b[n - k]/(k + 1), {k, 1, n}]; a[n_] := Numerator[b[2 n]]; Table[a[n], {n, 0, 14}]
PROG
(PARI) a(n) = numerator(bernfrac(2*n)*(2*n)!); \\ Michel Marcus, Sep 01 2021
CROSSREFS
Sequence in context: A054644 A006434 A240397 * A002702 A068204 A203033
KEYWORD
sign,frac
AUTHOR
Ilya Gutkovskiy, Sep 01 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 17 23:39 EDT 2024. Contains 372607 sequences. (Running on oeis4.)