The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A347425 a(n) = Bernoulli(2*n) * (2*n+1)! if 2*n+1 is a prime, otherwise a(n) = Bernoulli(2*n) * (2*n)!. 1
 1, 1, -4, 120, -1344, 3024000, -1576143360, 101708006400, -2522591034163200, 6686974460694528000, -1287307431968882688000, 160078872315904478576640000, -53718579665963356985229312000, 574898901006059006921736192000000, -241364461951740682229320388129587200000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Table of n, a(n) for n=0..14. Index entries for sequences related to Bernoulli numbers FORMULA a(n) is the numerator of Bernoulli(2*n) * (2*n)! (for denominators see A128059). a(n) is the numerator of (2*n)!^2 * [x^(2*n)] x * coth(x/2) / 2. a(n) is the numerator of b(2*n) where b(n) = -Sum_{k=1..n} binomial(n,k)^2 * k! * b(n-k) / (k+1), b(0) = 1. EXAMPLE Bernoulli(2*n) * (2*n)! = [ 1, 1/3, -4/5, 120/7, -1344, 3024000/11, -1576143360/13, 101708006400, -2522591034163200/17, 6686974460694528000/19, ... ]. MATHEMATICA a[n_] := If[PrimeQ[2 n + 1], BernoulliB[2 n] (2 n + 1)!, BernoulliB[2 n] (2 n)!]; Table[a[n], {n, 0, 14}] Table[Numerator[BernoulliB[2 n] (2 n)!], {n, 0, 14}] Table[Numerator[(2 n)!^2 SeriesCoefficient[x Coth[x/2]/2, {x, 0, 2 n}]], {n, 0, 14}] b[0] = 1; b[n_] := b[n] = -Sum[Binomial[n, k]^2 k! b[n - k]/(k + 1), {k, 1, n}]; a[n_] := Numerator[b[2 n]]; Table[a[n], {n, 0, 14}] PROG (PARI) a(n) = numerator(bernfrac(2*n)*(2*n)!); \\ Michel Marcus, Sep 01 2021 CROSSREFS Cf. A000367, A001332, A002431, A002445, A036278, A128059. Sequence in context: A054644 A006434 A240397 * A002702 A068204 A203033 Adjacent sequences: A347422 A347423 A347424 * A347426 A347427 A347428 KEYWORD sign,frac AUTHOR Ilya Gutkovskiy, Sep 01 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 23:39 EDT 2024. Contains 372607 sequences. (Running on oeis4.)