OFFSET
0,3
FORMULA
a(n) is the numerator of Bernoulli(2*n) * (2*n)! (for denominators see A128059).
a(n) is the numerator of (2*n)!^2 * [x^(2*n)] x * coth(x/2) / 2.
a(n) is the numerator of b(2*n) where b(n) = -Sum_{k=1..n} binomial(n,k)^2 * k! * b(n-k) / (k+1), b(0) = 1.
EXAMPLE
Bernoulli(2*n) * (2*n)! = [ 1, 1/3, -4/5, 120/7, -1344, 3024000/11, -1576143360/13, 101708006400, -2522591034163200/17, 6686974460694528000/19, ... ].
MATHEMATICA
a[n_] := If[PrimeQ[2 n + 1], BernoulliB[2 n] (2 n + 1)!, BernoulliB[2 n] (2 n)!]; Table[a[n], {n, 0, 14}]
Table[Numerator[BernoulliB[2 n] (2 n)!], {n, 0, 14}]
Table[Numerator[(2 n)!^2 SeriesCoefficient[x Coth[x/2]/2, {x, 0, 2 n}]], {n, 0, 14}]
b[0] = 1; b[n_] := b[n] = -Sum[Binomial[n, k]^2 k! b[n - k]/(k + 1), {k, 1, n}]; a[n_] := Numerator[b[2 n]]; Table[a[n], {n, 0, 14}]
PROG
(PARI) a(n) = numerator(bernfrac(2*n)*(2*n)!); \\ Michel Marcus, Sep 01 2021
CROSSREFS
KEYWORD
sign,frac
AUTHOR
Ilya Gutkovskiy, Sep 01 2021
STATUS
approved