login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346491
Number of factorizations of the n-th Fibonacci number.
1
1, 1, 1, 1, 1, 3, 1, 2, 2, 2, 1, 29, 1, 2, 5, 5, 1, 21, 2, 15, 5, 2, 1, 719, 4, 2, 15, 15, 1, 296, 2, 15, 5, 2, 5, 4323, 5, 5, 5, 203, 2, 296, 1, 52, 52, 5, 1, 32653, 5, 135, 5, 15, 2, 1315, 15, 566, 52, 5, 2, 270920, 2, 5, 52, 203, 5, 296, 5, 52, 52, 877, 2
OFFSET
1,6
LINKS
FORMULA
a(n) = A001055(A000045).
a(n) = A001055(A046523(A000045(n))).
a(n) = A001055(A278245(n)).
a(n) = 1 <=> n in { A001605 } union {1,2}.
a(n) = 2 <=> n in { A072381 }.
MAPLE
b:= proc(n, k) option remember; `if`(n>k, 0, 1)+`if`(isprime(n), 0,
add(`if`(d>k, 0, b(n/d, d)), d=numtheory[divisors](n) minus {1, n}))
end:
a:= proc(n) option remember; b((l-> mul(ithprime(i)^l[i], i=1..nops(l)))(
sort(map(i-> i[2], ifactors(combinat[fibonacci](n))[2]), `>`))$2)
end:
seq(a(n), n=1..80);
MATHEMATICA
T[_, 1] = T[1, _] = 1;
T[n_, m_] := T[n, m] = DivisorSum[n, If[1 < # <= m, T[n/#, #], 0]&];
f[n_] := T[n, n];
a[n_] := f[Fibonacci[n]];
Table[Print[n, " ", a[n]]; a[n], {n, 1, 119}] (* Jean-François Alcover, Sep 08 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 19 2021
STATUS
approved