login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346494
Heptagonal numbers (A000566) with prime indices (A000040).
1
7, 18, 55, 112, 286, 403, 697, 874, 1288, 2059, 2356, 3367, 4141, 4558, 5452, 6943, 8614, 9211, 11122, 12496, 13213, 15484, 17098, 19669, 23377, 25351, 26368, 28462, 29539, 31753, 40132, 42706, 46717, 48094, 55279, 56776, 61387, 66178, 69472, 74563, 79834
OFFSET
1,1
FORMULA
a(n) = A000566(A000040(n)) = prime(n)*(5*prime(n)-3)/2.
EXAMPLE
a(1) = Heptagonal(prime(1)) = A000566(2) = 2*(5*2-3)/2 = 7;
a(2) = Heptagonal(prime(2)) = A000566(3) = 3*(5*3-3)/2 = 18;
a(3) = Heptagonal(prime(3)) = A000566(5) = 5*(5*5-3)/2 = 55.
MATHEMATICA
A346494[n_] := PolygonalNumber[7, Prime[n]]; Table[A346494[n], {n, 1, 41}] (* Robert P. P. McKone, Aug 22 2021 *)
PROG
(Sage)
A = [int(p*(5*p-3)/2) for p in range(0, 10^3) if p in Primes()]
(Python)
from sympy import primerange
print([p*(5*p-3)//2 for p in primerange(1, 180)]) # Michael S. Branicky, Aug 22 2021
(PARI) a(n) = my(p=prime(n)); p*(5*p-3)/2; \\ Michel Marcus, Sep 16 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Dumitru Damian, Aug 22 2021
STATUS
approved