The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A346490 Total number of partitions of all n-multisets {1,2,...,n-j,1,2,...,j} for 0 <= j <= n. 4
1, 2, 6, 18, 61, 228, 926, 4126, 19688, 101582, 556763, 3258810, 20134527, 131591030, 902915694, 6506096000, 48986713992, 385159376478, 3151457714098, 26806601933838, 236457090358459, 2160451562170100, 20408176433186475, 199086685731569740, 2002713693735431017 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
Also total number of factorizations of Product_{i=1..n-j} prime(i) * Product_{i=1..j} prime(i) for 0 <= j <= n.
LINKS
FORMULA
a(n) = Sum_{j=0..n} A001055(A002110(n-j)*A002110(j)).
a(n) = Sum_{j=0..n} A346500(n-j,j).
MAPLE
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; `if`(n<k, A(k, n),
`if`(k=0, b(n), (A(n+1, k-1)+add(A(n-k+j, j)
*binomial(k-1, j), j=0..k-1)+A(n, k-1))/2))
end:
a:= n-> add(A(n-j, j), j=0..n):
seq(a(n), n=0..24);
MATHEMATICA
b[n_] := b[n] = If[n == 0, 1,
Sum[b[n - j]*Binomial[n - 1, j - 1], {j, 1, n}]];
A[n_, k_] := A[n, k] = If[n < k, A[k, n],
If[k == 0, b[n], (A[n + 1, k - 1] + Sum[A[n - k + j, j]
*Binomial[k - 1, j], {j, 0, k - 1}] + A[n, k - 1])/2]];
a[n_] := Sum[A[n - j, j], {j, 0, n}];
Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Mar 12 2022, after Alois P. Heinz *)
CROSSREFS
Antidiagonal sums of A346500.
Sequence in context: A148462 A123639 A228448 * A177473 A177471 A303117
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 19 2021
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 17 18:36 EDT 2024. Contains 373463 sequences. (Running on oeis4.)