login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346490
Total number of partitions of all n-multisets {1,2,...,n-j,1,2,...,j} for 0 <= j <= n.
4
1, 2, 6, 18, 61, 228, 926, 4126, 19688, 101582, 556763, 3258810, 20134527, 131591030, 902915694, 6506096000, 48986713992, 385159376478, 3151457714098, 26806601933838, 236457090358459, 2160451562170100, 20408176433186475, 199086685731569740, 2002713693735431017
OFFSET
0,2
COMMENTS
Also total number of factorizations of Product_{i=1..n-j} prime(i) * Product_{i=1..j} prime(i) for 0 <= j <= n.
LINKS
FORMULA
a(n) = Sum_{j=0..n} A001055(A002110(n-j)*A002110(j)).
a(n) = Sum_{j=0..n} A346500(n-j,j).
MAPLE
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; `if`(n<k, A(k, n),
`if`(k=0, b(n), (A(n+1, k-1)+add(A(n-k+j, j)
*binomial(k-1, j), j=0..k-1)+A(n, k-1))/2))
end:
a:= n-> add(A(n-j, j), j=0..n):
seq(a(n), n=0..24);
MATHEMATICA
b[n_] := b[n] = If[n == 0, 1,
Sum[b[n - j]*Binomial[n - 1, j - 1], {j, 1, n}]];
A[n_, k_] := A[n, k] = If[n < k, A[k, n],
If[k == 0, b[n], (A[n + 1, k - 1] + Sum[A[n - k + j, j]
*Binomial[k - 1, j], {j, 0, k - 1}] + A[n, k - 1])/2]];
a[n_] := Sum[A[n - j, j], {j, 0, n}];
Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Mar 12 2022, after Alois P. Heinz *)
CROSSREFS
Antidiagonal sums of A346500.
Sequence in context: A148462 A123639 A228448 * A177473 A177471 A303117
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 19 2021
STATUS
approved