OFFSET
0,2
COMMENTS
Also total number of factorizations of Product_{i=1..n-j} prime(i) * Product_{i=1..j} prime(i) for 0 <= j <= n.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..576
MAPLE
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; `if`(n<k, A(k, n),
`if`(k=0, b(n), (A(n+1, k-1)+add(A(n-k+j, j)
*binomial(k-1, j), j=0..k-1)+A(n, k-1))/2))
end:
a:= n-> add(A(n-j, j), j=0..n):
seq(a(n), n=0..24);
MATHEMATICA
b[n_] := b[n] = If[n == 0, 1,
Sum[b[n - j]*Binomial[n - 1, j - 1], {j, 1, n}]];
A[n_, k_] := A[n, k] = If[n < k, A[k, n],
If[k == 0, b[n], (A[n + 1, k - 1] + Sum[A[n - k + j, j]
*Binomial[k - 1, j], {j, 0, k - 1}] + A[n, k - 1])/2]];
a[n_] := Sum[A[n - j, j], {j, 0, n}];
Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Mar 12 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 19 2021
STATUS
approved