login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346428
Total number of partitions of all n-multisets {0,...,0,1,2,...,j} for 0 <= j <= n.
4
1, 2, 6, 17, 53, 180, 683, 2866, 13219, 66307, 358532, 2074229, 12761831, 83086064, 570017222, 4106269668, 30965072776, 243778358992, 1998878586251, 17034471643814, 150591119435358, 1378657063570498, 13050460812585580, 127553991370245410, 1285578058726241427
OFFSET
0,2
COMMENTS
Also total number of factorizations of 2^(n-j) * Product_{i=1..j} prime(i+1) for 0 <= j <= n; a(2) = 6: 2*2, 4, 2*3, 6, 3*5, 15; a(3) = 17: 2*2*2, 2*4, 8, 2*2*3, 3*4, 2*6, 12, 2*3*5, 5*6, 3*10, 2*15, 30, 3*5*7, 7*15, 5*21, 3*35, 105.
LINKS
FORMULA
a(n) = Sum_{j=0..n} A346426(n-j,j).
EXAMPLE
a(2) = 6: 00, 0|0, 01, 0|1, 12, 1|2.
a(3) = 17: 000, 0|00, 0|0|0, 001, 00|1, 0|01, 0|0|1, 012, 0|12, 02|1, 01|2, 0|1|2, 123, 1|23, 13|2, 12|3, 1|2|3.
MAPLE
s:= proc(n) option remember; expand(`if`(n=0, 1,
x*add(s(n-j)*binomial(n-1, j-1), j=1..n)))
end:
S:= proc(n, k) option remember; coeff(s(n), x, k) end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=0,
combinat[numbpart](n), add(b(n-j, i-1), j=0..n)))
end:
a:= n-> add(add(S(n-i, j)*b(i, j), j=0..n-i), i=0..n):
seq(a(n), n=0..25);
MATHEMATICA
s[n_] := s[n] = Expand[If[n == 0, 1,
x*Sum[s[n - j]*Binomial[n - 1, j - 1], {j, 1, n}]]];
S[n_, k_] := S[n, k] = Coefficient[s[n], x, k];
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0,
PartitionsP[n], Sum[b[n - j, i - 1], {j, 0, n}]]];
a[n_] := Sum[Sum[S[n - i, j]*b[i, j], {j, 0, n - i}], {i, 0, n}];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Mar 12 2022, after Alois P. Heinz *)
CROSSREFS
Antidiagonal sums of A346426.
Sequence in context: A364329 A367056 A368598 * A148453 A097514 A108630
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 16 2021
STATUS
approved