login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A346428 Total number of partitions of all n-multisets {0,...,0,1,2,...,j} for 0 <= j <= n. 4
1, 2, 6, 17, 53, 180, 683, 2866, 13219, 66307, 358532, 2074229, 12761831, 83086064, 570017222, 4106269668, 30965072776, 243778358992, 1998878586251, 17034471643814, 150591119435358, 1378657063570498, 13050460812585580, 127553991370245410, 1285578058726241427 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Also total number of factorizations of 2^(n-j) * Product_{i=1..j} prime(i+1) for 0 <= j <= n; a(2) = 6: 2*2, 4, 2*3, 6, 3*5, 15; a(3) = 17: 2*2*2, 2*4, 8, 2*2*3, 3*4, 2*6, 12, 2*3*5, 5*6, 3*10, 2*15, 30, 3*5*7, 7*15, 5*21, 3*35, 105.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..576

FORMULA

a(n) = Sum_{j=0..n} A346426(n-j,j).

EXAMPLE

a(2) = 6: 00, 0|0, 01, 0|1, 12, 1|2.

a(3) = 17: 000, 0|00, 0|0|0, 001, 00|1, 0|01, 0|0|1, 012, 0|12, 02|1, 01|2, 0|1|2, 123, 1|23, 13|2, 12|3, 1|2|3.

MAPLE

s:= proc(n) option remember; expand(`if`(n=0, 1,

      x*add(s(n-j)*binomial(n-1, j-1), j=1..n)))

    end:

S:= proc(n, k) option remember; coeff(s(n), x, k) end:

b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=0,

      combinat[numbpart](n), add(b(n-j, i-1), j=0..n)))

    end:

a:= n-> add(add(S(n-i, j)*b(i, j), j=0..n-i), i=0..n):

seq(a(n), n=0..25);

CROSSREFS

Antidiagonal sums of A346426.

Cf. A346490, A346521.

Sequence in context: A148451 A148452 A307975 * A148453 A097514 A108630

Adjacent sequences:  A346425 A346426 A346427 * A346429 A346430 A346431

KEYWORD

nonn

AUTHOR

Alois P. Heinz, Jul 16 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 22 17:01 EDT 2021. Contains 347607 sequences. (Running on oeis4.)