login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367056
G.f. satisfies A(x) = 1 + x*A(x)^2 + x^3*A(x).
1
1, 1, 2, 6, 17, 52, 168, 561, 1922, 6719, 23871, 85938, 312823, 1149421, 4257460, 15880036, 59594517, 224856450, 852491806, 3245959002, 12407332166, 47592364107, 183139542306, 706794663136, 2735053815771, 10609811267757, 41251228784198
OFFSET
0,3
FORMULA
G.f.: A(x) = 2 / (1-x^3+sqrt((1-x^3)^2-4*x)).
a(n) = Sum_{k=0..floor(n/3)} binomial(n-2*k+1,k) * binomial(2*n-5*k,n-3*k)/(n-2*k+1).
D-finite with recurrence (n+1)*a(n) +2*(-2*n+1)*a(n-1) +(-2*n+7)*a(n-3) +(n-8)*a(n-6)=0. - R. J. Mathar, Dec 04 2023
MAPLE
A367056 := proc(n)
add(binomial(n-2*k+1, k) * binomial(2*n-5*k, n-3*k)/(n-2*k+1), k=0..floor(n/3)) ;
end proc:
seq(A367056(n), n=0..70) ; # R. J. Mathar, Dec 04 2023
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(n-2*k+1, k)*binomial(2*n-5*k, n-3*k)/(n-2*k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 04 2023
STATUS
approved