login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346518
Total number of partitions of all n-multisets {1,2,...,n-j,1,2,...,j} into distinct multisets for 0 <= j <= n.
3
1, 2, 5, 16, 53, 202, 826, 3724, 17939, 93390, 516125, 3042412, 18923139, 124368810, 857827458, 6208594458, 46937360868, 370335617694, 3039823038753, 25928519847988, 229285625745624, 2099543718917418, 19872430464012935, 194203934113959970, 1956736801957704866
OFFSET
0,2
COMMENTS
Also total number of factorizations of Product_{i=1..n-j} prime(i) * Product_{i=1..j} prime(i) into distinct factors for 0 <= j <= n.
LINKS
FORMULA
a(n) = Sum_{j=0..n} A045778(A002110(n-j)*A002110(j)).
a(n) = Sum_{j=0..n} A346517(n-j,j).
MAPLE
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; `if`(n<k, A(k, n),
`if`(k=0, b(n), (A(n+1, k-1)-add(A(n-k+j, j)
*binomial(k-1, j), j=0..k-1)+A(n, k-1))/2))
end:
a:= n-> add(A(n-j, j), j=0..n):
seq(a(n), n=0..24);
MATHEMATICA
(* Q is A322770 *)
Q[m_, n_] := Q[m, n] = If[n == 0, BellB[m], (1/2) (Q[m + 2, n - 1] +
Q[m + 1, n - 1] - Sum[Binomial[n - 1, k] Q[m, k], {k, 0, n - 1}])];
A[n_, k_] := Q[Abs[n - k], Min[n, k]];
a[n_] := Sum[A[n - j, j], {j, 0, n}];
Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Apr 06 2022 *)
CROSSREFS
Antidiagonal sums of A346517.
Sequence in context: A108521 A148397 A148398 * A100442 A081126 A018191
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Jul 21 2021
STATUS
approved