The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A346520 Number A(n,k) of partitions of the (n+k)-multiset {0,...,0,1,2,...,k} with n 0's into distinct multisets; square array A(n,k), n>=0, k>=0, read by antidiagonals. 23
 1, 1, 1, 2, 2, 1, 5, 5, 3, 2, 15, 15, 9, 5, 2, 52, 52, 31, 16, 7, 3, 203, 203, 120, 59, 25, 10, 4, 877, 877, 514, 244, 100, 38, 14, 5, 4140, 4140, 2407, 1112, 442, 161, 56, 19, 6, 21147, 21147, 12205, 5516, 2134, 750, 249, 80, 25, 8, 115975, 115975, 66491, 29505, 11147, 3799, 1213, 372, 111, 33, 10 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Also number A(n,k) of factorizations of 2^n * Product_{i=1..k} prime(i+1) into distinct factors; A(3,1) = 5: 2*3*4, 4*6, 3*8, 2*12, 24; A(1,2) = 5: 2*3*5, 5*6, 3*10, 2*15, 30. LINKS Alois P. Heinz, Antidiagonals n = 0..140, flattened FORMULA A(n,k) = A045778(A000079(n)*A070826(k+1)). A(n,k) = Sum_{j=0..k} Stirling2(k,j)*Sum_{i=0..n} binomial(j+i-1,i)*A000009(n-i). EXAMPLE A(2,2) = 9: 00|1|2, 001|2, 1|002, 0|01|2, 0|1|02, 01|02, 00|12, 0|012, 0012. Square array A(n,k) begins:   1,  1,   2,   5,   15,    52,   203,    877,    4140, ...   1,  2,   5,  15,   52,   203,   877,   4140,   21147, ...   1,  3,   9,  31,  120,   514,  2407,  12205,   66491, ...   2,  5,  16,  59,  244,  1112,  5516,  29505,  168938, ...   2,  7,  25, 100,  442,  2134, 11147,  62505,  373832, ...   3, 10,  38, 161,  750,  3799, 20739, 121141,  752681, ...   4, 14,  56, 249, 1213,  6404, 36332, 220000, 1413937, ...   5, 19,  80, 372, 1887, 10340, 60727, 379831, 2516880, ...   6, 25, 111, 539, 2840, 16108, 97666, 629346, 4288933, ...   ... MAPLE g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(      `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)     end: s:= proc(n) option remember; expand(`if`(n=0, 1,       x*add(s(n-j)*binomial(n-1, j-1), j=1..n)))     end: S:= proc(n, k) option remember; coeff(s(n), x, k) end: b:= proc(n, i) option remember; `if`(n=0, 1,      `if`(i=0, g(n), add(b(n-j, i-1), j=0..n)))     end: A:= (n, k)-> add(S(k, j)*b(n, j), j=0..k): seq(seq(A(n, d-n), n=0..d), d=0..12); MATHEMATICA g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j]*Sum[If[OddQ[d], d, 0], {d, Divisors[j]}], {j, 1, n}]/n]; s[n_] := s[n] = Expand[If[n == 0, 1, x*Sum[s[n - j]*Binomial[n - 1, j - 1], {j, 1, n}]]]; S[n_, k_] := S[n, k] = Coefficient[s[n], x, k]; b[n_, i_] := b[n, i] = If[n == 0, 1, If[i == 0, g[n], Sum[b[n - j, i - 1], {j, 0, n}]]]; A[n_, k_] := Sum[S[k, j]*b[n, j], {j, 0, k}]; Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 12}] // Flatten (* Jean-François Alcover, Jul 31 2021, after Alois P. Heinz *) CROSSREFS Columns k=0-10 give: A000009, A036469, A346822, A346823, A346824, A346825, A346826, A346827, A346828, A346829, A346830. Rows n=0+1,2-10 give: A000110, A087648, A346813, A346814, A346815, A346816, A346817, A346818, A346819, A346820. Main diagonal gives A346519. Antidiagonal sums give A346521. Cf. A000040, A000079, A045778, A048993, A070826, A346426. Sequence in context: A108087 A123158 A185414 * A133611 A010094 A019710 Adjacent sequences:  A346517 A346518 A346519 * A346521 A346522 A346523 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, Jul 21 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 29 18:41 EST 2021. Contains 349416 sequences. (Running on oeis4.)