The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A346517 Number A(n,k) of partitions of the (n+k)-multiset {1,2,...,n,1,2,...,k} into distinct multisets; square array A(n,k), n>=0, k>=0, read by antidiagonals. 15
 1, 1, 1, 2, 1, 2, 5, 3, 3, 5, 15, 9, 5, 9, 15, 52, 31, 18, 18, 31, 52, 203, 120, 70, 40, 70, 120, 203, 877, 514, 299, 172, 172, 299, 514, 877, 4140, 2407, 1393, 801, 457, 801, 1393, 2407, 4140, 21147, 12205, 7023, 4025, 2295, 2295, 4025, 7023, 12205, 21147 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS Also number A(n,k) of factorizations of Product_{i=1..n} prime(i) * Product_{i=1..k} prime(i) into distinct factors; A(2,2) = 5: 2*3*6, 4*9, 3*12, 2*18, 36. LINKS Alois P. Heinz, Antidiagonals n = 0..140, flattened FORMULA A(n,k) = A045778(A002110(n)*A002110(k)). A(n,k) = A(k,n). A(n,k) = A322770(abs(n-k),min(n,k)). EXAMPLE A(2,2) = 5: 1122, 11|22, 1|122, 112|2, 1|12|2. Square array A(n,k) begins: 1, 1, 2, 5, 15, 52, 203, 877, ... 1, 1, 3, 9, 31, 120, 514, 2407, ... 2, 3, 5, 18, 70, 299, 1393, 7023, ... 5, 9, 18, 40, 172, 801, 4025, 21709, ... 15, 31, 70, 172, 457, 2295, 12347, 70843, ... 52, 120, 299, 801, 2295, 6995, 40043, 243235, ... 203, 514, 1393, 4025, 12347, 40043, 136771, 875936, ... 877, 2407, 7023, 21709, 70843, 243235, 875936, 3299218, ... ... MAPLE g:= proc(n, k) option remember; uses numtheory; `if`(n>k, 0, 1)+ `if`(isprime(n), 0, add(`if`(d>k or max(factorset(n/d))>d, 0, g(n/d, d-1)), d=divisors(n) minus {1, n})) end: p:= proc(n) option remember; `if`(n=0, 1, p(n-1)*ithprime(n)) end: A:= (n, k)-> g(p(n)*p(k)\$2): seq(seq(A(n, d-n), n=0..d), d=0..10); # second Maple program: b:= proc(n) option remember; `if`(n=0, 1, add(b(n-j)*binomial(n-1, j-1), j=1..n)) end: A:= proc(n, k) option remember; `if`(n

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 29 19:01 EDT 2023. Contains 361599 sequences. (Running on oeis4.)