login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A346517 Number A(n,k) of partitions of the (n+k)-multiset {1,2,...,n,1,2,...,k} into distinct multisets; square array A(n,k), n>=0, k>=0, read by antidiagonals. 15
1, 1, 1, 2, 1, 2, 5, 3, 3, 5, 15, 9, 5, 9, 15, 52, 31, 18, 18, 31, 52, 203, 120, 70, 40, 70, 120, 203, 877, 514, 299, 172, 172, 299, 514, 877, 4140, 2407, 1393, 801, 457, 801, 1393, 2407, 4140, 21147, 12205, 7023, 4025, 2295, 2295, 4025, 7023, 12205, 21147 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Also number A(n,k) of factorizations of Product_{i=1..n} prime(i) * Product_{i=1..k} prime(i) into distinct factors; A(2,2) = 5: 2*3*6, 4*9, 3*12, 2*18, 36.

LINKS

Alois P. Heinz, Antidiagonals n = 0..140, flattened

FORMULA

A(n,k) = A045778(A002110(n)*A002110(k)).

A(n,k) = A(k,n).

A(n,k) = A322770(abs(n-k),min(n,k)).

EXAMPLE

A(2,2) = 5: 1122, 11|22, 1|122, 112|2, 1|12|2.

Square array A(n,k) begins:

1, 1, 2, 5, 15, 52, 203, 877, ...

1, 1, 3, 9, 31, 120, 514, 2407, ...

2, 3, 5, 18, 70, 299, 1393, 7023, ...

5, 9, 18, 40, 172, 801, 4025, 21709, ...

15, 31, 70, 172, 457, 2295, 12347, 70843, ...

52, 120, 299, 801, 2295, 6995, 40043, 243235, ...

203, 514, 1393, 4025, 12347, 40043, 136771, 875936, ...

877, 2407, 7023, 21709, 70843, 243235, 875936, 3299218, ...

...

MAPLE

g:= proc(n, k) option remember; uses numtheory; `if`(n>k, 0, 1)+

`if`(isprime(n), 0, add(`if`(d>k or max(factorset(n/d))>d, 0,

g(n/d, d-1)), d=divisors(n) minus {1, n}))

end:

p:= proc(n) option remember; `if`(n=0, 1, p(n-1)*ithprime(n)) end:

A:= (n, k)-> g(p(n)*p(k)$2):

seq(seq(A(n, d-n), n=0..d), d=0..10);

# second Maple program:

b:= proc(n) option remember; `if`(n=0, 1,

add(b(n-j)*binomial(n-1, j-1), j=1..n))

end:

A:= proc(n, k) option remember; `if`(n<k, A(k, n),

`if`(k=0, b(n), (A(n+1, k-1)-add(A(n-k+j, j)

*binomial(k-1, j), j=0..k-1)+A(n, k-1))/2))

end:

seq(seq(A(n, d-n), n=0..d), d=0..10);

MATHEMATICA

(* Q is A322770 *)

Q[m_, n_] := Q[m, n] = If[n == 0, BellB[m], (1/2)(Q[m+2, n-1] + Q[m+1, n-1] - Sum[Binomial[n-1, k] Q[m, k], {k, 0, n-1}])];

A[n_, k_] := Q[Abs[n-k], Min[n, k]];

Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Aug 19 2021 *)

CROSSREFS

Columns (or rows) k=0-10 give: A000110, A087648, A322773, A322774, A346897, A346898, A346899, A346900, A346901, A346902, A346903.

Main diagonal gives A094574.

First upper (or lower) diagonal gives A322771.

Second upper (or lower) diagonal gives A322772.

Antidiagonal sums give A346518.

Cf. A002110, A045778, A322770, A346500.

Sequence in context: A025165 A345278 A212431 * A318354 A348373 A106480

Adjacent sequences: A346514 A346515 A346516 * A346518 A346519 A346520

KEYWORD

nonn,tabl

AUTHOR

Alois P. Heinz, Jul 21 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 29 19:01 EDT 2023. Contains 361599 sequences. (Running on oeis4.)