login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346517
Number A(n,k) of partitions of the (n+k)-multiset {1,2,...,n,1,2,...,k} into distinct multisets; square array A(n,k), n>=0, k>=0, read by antidiagonals.
15
1, 1, 1, 2, 1, 2, 5, 3, 3, 5, 15, 9, 5, 9, 15, 52, 31, 18, 18, 31, 52, 203, 120, 70, 40, 70, 120, 203, 877, 514, 299, 172, 172, 299, 514, 877, 4140, 2407, 1393, 801, 457, 801, 1393, 2407, 4140, 21147, 12205, 7023, 4025, 2295, 2295, 4025, 7023, 12205, 21147
OFFSET
0,4
COMMENTS
Also number A(n,k) of factorizations of Product_{i=1..n} prime(i) * Product_{i=1..k} prime(i) into distinct factors; A(2,2) = 5: 2*3*6, 4*9, 3*12, 2*18, 36.
LINKS
FORMULA
A(n,k) = A045778(A002110(n)*A002110(k)).
A(n,k) = A(k,n).
A(n,k) = A322770(abs(n-k),min(n,k)).
EXAMPLE
A(2,2) = 5: 1122, 11|22, 1|122, 112|2, 1|12|2.
Square array A(n,k) begins:
1, 1, 2, 5, 15, 52, 203, 877, ...
1, 1, 3, 9, 31, 120, 514, 2407, ...
2, 3, 5, 18, 70, 299, 1393, 7023, ...
5, 9, 18, 40, 172, 801, 4025, 21709, ...
15, 31, 70, 172, 457, 2295, 12347, 70843, ...
52, 120, 299, 801, 2295, 6995, 40043, 243235, ...
203, 514, 1393, 4025, 12347, 40043, 136771, 875936, ...
877, 2407, 7023, 21709, 70843, 243235, 875936, 3299218, ...
...
MAPLE
g:= proc(n, k) option remember; uses numtheory; `if`(n>k, 0, 1)+
`if`(isprime(n), 0, add(`if`(d>k or max(factorset(n/d))>d, 0,
g(n/d, d-1)), d=divisors(n) minus {1, n}))
end:
p:= proc(n) option remember; `if`(n=0, 1, p(n-1)*ithprime(n)) end:
A:= (n, k)-> g(p(n)*p(k)$2):
seq(seq(A(n, d-n), n=0..d), d=0..10);
# second Maple program:
b:= proc(n) option remember; `if`(n=0, 1,
add(b(n-j)*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; `if`(n<k, A(k, n),
`if`(k=0, b(n), (A(n+1, k-1)-add(A(n-k+j, j)
*binomial(k-1, j), j=0..k-1)+A(n, k-1))/2))
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
MATHEMATICA
(* Q is A322770 *)
Q[m_, n_] := Q[m, n] = If[n == 0, BellB[m], (1/2)(Q[m+2, n-1] + Q[m+1, n-1] - Sum[Binomial[n-1, k] Q[m, k], {k, 0, n-1}])];
A[n_, k_] := Q[Abs[n-k], Min[n, k]];
Table[A[n, d-n], {d, 0, 10}, {n, 0, d}] // Flatten (* Jean-François Alcover, Aug 19 2021 *)
CROSSREFS
Columns (or rows) k=0-10 give: A000110, A087648, A322773, A322774, A346897, A346898, A346899, A346900, A346901, A346902, A346903.
Main diagonal gives A094574.
First upper (or lower) diagonal gives A322771.
Second upper (or lower) diagonal gives A322772.
Antidiagonal sums give A346518.
Sequence in context: A025165 A345278 A212431 * A318354 A348373 A106480
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Jul 21 2021
STATUS
approved