login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A346515
a(n) = n*(n+2)*(n+4)*(n+6)*(n+8)*(n+10)*(n+12)*(n+14).
1
0, 2027025, 10321920, 34459425, 92897280, 218243025, 464486400, 916620705, 1703116800, 3011753745, 5109350400, 8365982625, 13284311040, 20534684625, 30996725760, 45808142625, 66421555200, 94670161425, 132843110400, 183771489825, 250925875200, 338526428625, 451666575360
OFFSET
0,2
COMMENTS
a(n) can always be expressed as the difference of two squares: x^2 - y^2.
A346514(n) gives the x-values for each product. The y-values being A152691(n+7).
More generally, for any k, we have: n*(n+k)*(n+2*k)*...*(n+7*k) = a(n,k) = x(n,k)^2 - y(n,k)^2, where
x(n,k) = n^4 + 14*k*n^3 + 63*k^2*n^2 + 98*k^3*n + 28*k^4,
y(n,k) = 8*k^3*n + 28*k^4.
A239035(n) corresponds to a(n,k) in the case k = 1, with related y(n,k) = A346376(n).
FORMULA
a(n) = A346514(n)^2 - A152691(n+7)^2.
MATHEMATICA
a[n_] := (n + 14)!!/(n - 2)!!; Array[a, 23, 0] (* Amiram Eldar, Jul 22 2021 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Lamine Ngom, Jul 21 2021
STATUS
approved