OFFSET
1,4
COMMENTS
The table entries T(n,k), for n,k>=1, are defined by means of the recurrence relation (1)... T(n+1,k) = 1/2*{(k-1)*T(n,k-1)+(k+1)*T(n,k+1)}, with boundary condition T(1,k) = 1.
The first column of the table produces the sequence of zigzag numbers A000111. Cf. A185416, A185418 and A185420.
Diagonal T(n,n+1) = A290579(n) for n>=1. - Paul D. Hanna, Aug 07 2017
FORMULA
(1)... T(n,k) = Z(n,k)/k with Z(n,x) the zigzag polynomials described in A147309.
EXAMPLE
The array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...;
2, 5, 10, 17, 26, 37, 50, 65, 82, ...;
5, 16, 39, 80, 145, 240, 371, 544, 765, ...;
16, 61, 176, 421, 880, 1661, 2896, 4741, 7376, ...;
61, 272, 903, 2464, 5825, 12336, 23947, 43328, 73989, ...;
272, 1385, 5200, 15917, 41936, 98377, 210320, 416765, ...;
1385, 7936, 33219, 112640, 326965, 840960, 1962191, ...; ...
Examples of the recurrence:
T(4,4) = 80 = (3*T(3,3) + 5*T(3,5))/2 = (3*10 + 5*26)/2;
T(5,3) = 176 = (2*T(4,2) + 4*T(4,4))/2 = (2*16 + 4*80)/2;
T(6,2) = 272 = (1*T(5,1) + 3*T(5,3))/2 = (1*16 + 3*176)/2.
MAPLE
PROG
(PARI) {T(n, k)=if(n==1, 1, ((k-1)*T(n-1, k-1)+(k+1)*T(n-1, k+1))/2)}
for(n=1, 10, for(k=1, 10, print1(T(n, k), ", ")); print(""))
CROSSREFS
KEYWORD
AUTHOR
Peter Bala, Jan 26 2011
STATUS
approved