OFFSET
1,2
COMMENTS
The table entries T(n,k), for n,k>=1, are defined by means of the recurrence relation
(1)... T(n+1,k) = (2*k+2)*T(n,k+1)-(k-1)*T(n,k-1),
with boundary condition T(1,k) = 1.
The first column of the table gives A080795.
For similarly defined tables used to calculate the zigzag numbers A000111 and the Springer numbers A001586 see A185414 and A185418, respectively.
See also A185416.
FORMULA
EXAMPLE
Square array begins
n\k|......1.......2.......3........4.......5.........6
======================================================
..1|......1.......1.......1........1........1........1
..2|......4.......5.......6........7........8........9
..3|.....20......32......46.......62.......80......100
..4|....128.....256.....432......662......952.....1308
..5|...1024....2464....4784.....8224....13048....19544
..6|...9856...27680...60864...116128...201632...327096
..7|.110720..355328..873664..1833728..3460640..6046720
..
Examples of recurrence relation:
T(4,3) = 432 = 8*T(3,4) - 2*T(3,2) = 8*62 - 2*32;
T(6,2) = 27680 = 6*T(5,3) - 1*T(5,1) = 6*4784 - 1*1024.
MAPLE
M := proc(n, x) option remember;
description 'minimax polynomials M(n, x)'
if n = 0
return 1
else return
x*(2*M(n-1, x+1)-M(n-1, x-1))
end proc:
for n from 1 to 10 do
seq(M(n, k)/k, k = 1..10);
end do;
MATHEMATICA
M[n_, x_] := M[n, x] = If[n == 0, 1, x (2 M[n - 1, x + 1] - M[n - 1, x - 1])];
T[n_, k_] := M[n, k]/k;
Table[T[d - k + 1, k], {d, 1, 9}, {k, 1, d}] // Flatten (* Jean-François Alcover, Sep 24 2022 *)
PROG
(PARI) {T(n, k)=if(n<1||k<1, 0, if(n==1, 1, (2*k+2)*T(n-1, k+1)-(k-1)*T(n-1, k-1)))}
CROSSREFS
KEYWORD
AUTHOR
Peter Bala, Jan 30 2011
STATUS
approved