OFFSET
1,4
COMMENTS
The table entries T(n,k), n,k>=1, are defined by the recurrence relation
1)... T(n+1,k) = (k-1)*T(n,k-1)-k*T(n,k)+(k+1)*T(n,k+1) with boundary condition T(1,k)=1.
The first column of the table is A080635.
FORMULA
(1)... T(n,k) = P(n,k)/k, where P(n,x) are the polynomials defined in A185415.
EXAMPLE
Triangle begins
n\k|....1......2......3......4......5.......6.......7
=====================================================
..1|....1......1......1......1......1.......1.......1
..2|....1......2......3......4......5.......6.......7
..3|....3......6.....11.....18.....27......38......51
..4|....9.....24.....51.....96....165.....264.....399
..5|...39....114....279....594...1143....2034....3399
..6|..189....648...1767...4176...8865...17304...31563
..7|.1107...4194..12699..32922..76203..161442..318339
..
Examples of the recurrence:
T(4,4) = 96 = 3*T(3,3)-4*T(3,4)+5*T(3,5) = 3*11-4*18+ 5*27;
T(5,1) = 39 = 0*T(4,0)-1*T(4,1)+2*T(4,2) = -1*9+2*24;
MAPLE
PROG
(PARI) {T(n, k)=if(n==1, 1, (k-1)*T(n-1, k-1)-k*T(n-1, k)+(k+1)*T(n-1, k+1))}
CROSSREFS
KEYWORD
AUTHOR
Peter Bala, Jan 28 2011
STATUS
approved