login
A133611
A triangular array of numbers related to factorization and number of parts in Murasaki diagrams.
3
1, 1, 1, 2, 2, 1, 5, 5, 4, 1, 15, 15, 14, 7, 1, 52, 52, 51, 36, 11, 1, 203, 203, 202, 171, 81, 16, 1, 877, 877, 876, 813, 512, 162, 22, 1, 4140, 4140, 4139, 4012, 3046, 1345, 295, 29, 1, 21147, 21147, 21146, 20891, 17866, 10096, 3145, 499, 37, 1, 115975, 115975, 115974, 115463, 106133, 72028, 29503, 6676, 796, 46, 1
OFFSET
1,4
COMMENTS
When the Bell multisets are encoded as described in A130274, the seven case in the example can be coded as 19578, 15942, 30873, 26427, 35642, 29491 and 32938.
LINKS
FORMULA
Equals A048993 * A000012. - Gary W. Adamson, Jan 29 2008
That is, T(i,j) = Sum_{k=j..i} A048993(i,k) for 0 <= j <= i. - Robert Israel, Nov 01 2018
EXAMPLE
The array begins:
1
1 1
2 2 1
5 5 4 1
15 15 14 7 1
52 52 51 36 11 1
...
a(14) = 7 because only seven of the 52 Bell multisets can be generated by attaching a new stroke to the third element in the set of diaqrams with four strokes.
MAPLE
T:= proc(i, j) add(combinat:-stirling2(i, k), k=j..i) end proc:
seq(seq(T(i, j), j=0..i), i=0..15); # Robert Israel, Nov 01 2018
# second Maple program:
b:= proc(n, t) option remember; `if`(n>0, add(b(n-j, t+1)*
binomial(n-1, j-1), j=1..n), add(x^j, j=0..t))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 0)):
seq(T(n), n=0..10); # Alois P. Heinz, Aug 30 2019
MATHEMATICA
row[n_] := Table[StirlingS2[n, k], {k, 0, n}] // Reverse // Accumulate // Reverse;
Array[row, 11, 0] // Flatten (* Jean-François Alcover, Dec 07 2019 *)
CROSSREFS
Cf. A000110 (row sums), A137650 (a similar triangle), A130274, A211561.
Cf. A048993.
Sequence in context: A185414 A346520 A362925 * A010094 A019710 A118806
KEYWORD
nonn,tabl
AUTHOR
Alford Arnold, Sep 18 2007
EXTENSIONS
Definition not clear to me - N. J. A. Sloane, Sep 18 2007
More terms from Robert Israel, Nov 01 2018
STATUS
approved