login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A137650
Triangle read by rows, A008277 * A000012.
7
1, 2, 1, 5, 4, 1, 15, 14, 7, 1, 52, 51, 36, 11, 1, 203, 202, 171, 81, 16, 1, 877, 876, 813, 512, 162, 22, 1, 4140, 4139, 4012, 3046, 1345, 295, 29, 1, 21147, 21146, 20891, 17866, 10096, 3145, 499, 37, 1, 115975, 115974, 115463
OFFSET
1,2
COMMENTS
Left column = Bell numbers (A000110) starting (1, 2, 5, 15, 52, 203, ...). Row sums = A005493(n+1): (1, 3, 10, 37, 151, 674, ...).
Corresponding to the generalized Stirling number triangle of first kind A049444. - Peter Luschny, Sep 18 2011
FORMULA
A008277 * A000012 as infinite lower triangular matrices. Partial sums of A008277 rows starting from the right.
EXAMPLE
First few rows of the triangle are
1;
2, 1;
5, 4, 1;
15, 14, 7, 1;
52, 51, 36, 11, 1;
203, 202, 171, 81, 16, 1;
877, 876, 813, 512, 162, 22, 1;
...
MAPLE
A137650_row := proc(n) local k, i;
add(add(combinat[stirling2](n, n-i), i=0..k)*x^(n-k-1), k=0..n-1);
seq(coeff(%, x, k), k=0..n-1) end:
seq(print(A137650_row(n)), n=1..7); # Peter Luschny, Sep 18 2011
MATHEMATICA
row[n_] := Table[StirlingS2[n, k], {k, 0, n}] // Reverse // Accumulate // Reverse // Rest;
Array[row, 10] // Flatten (* Jean-François Alcover, Dec 07 2019 *)
CROSSREFS
A similar triangle is A133611.
Sequence in context: A362924 A154930 A104259 * A363732 A171515 A110271
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Feb 01 2008
STATUS
approved