The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A104259 Triangle T read by rows: matrix product of Pascal and Catalan triangle. 10
 1, 2, 1, 5, 4, 1, 15, 14, 6, 1, 51, 50, 27, 8, 1, 188, 187, 113, 44, 10, 1, 731, 730, 468, 212, 65, 12, 1, 2950, 2949, 1956, 970, 355, 90, 14, 1, 12235, 12234, 8291, 4356, 1785, 550, 119, 16, 1, 51822, 51821, 35643, 19474, 8612, 3021, 805, 152, 18, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Also, Riordan array (G,G), G(t)=(1 - ((1-5*t)/(1-t))^(1/2))/(2*t). From Emanuele Munarini, May 18 2011: (Start) Row sums = A002212. Diagonal sums = A190737. Central coefficients = A190738. (End) LINKS Robert Israel, Table of n, a(n) for n = 0..5049 D. Merlini, R. Sprugnoli and M. C. Verri, An algebra for proper generating trees, Mathematics and Computer Science, Part of the series Trends in Mathematics pp 127-139, 2000. [alternative link] D. Merlini, R. Sprugnoli and M. C. Verri, An algebra for proper generating trees, Colloquium on Mathematics and Computer Science, Versailles, September 2000. FORMULA T(n,k) = sum(binomial(n,i)*binomial(2*i-k,i-k)*(k+1)/(i+1),i=k..n). T(n+1,k+2) = T(n+1,k+1) + T(n,k+2) - T(n,k+1) - T(n,k). - Emanuele Munarini, May 18 2011 T(n,k) = T(n-1,k-1) + 2*T(n-1,k) + Sum_{i, i>=0} T(n-1,k+1+i). - Philippe Deléham, Feb 23 2012 T(n,k) = C(n,k)*hypergeom([k/2+1/2,k/2+1,k-n],[k+1,k+2],-4). - Peter Luschny, Sep 23 2014 EXAMPLE Triangle begins: 1 2, 1 5, 4, 1 15, 14, 6, 1 51, 50, 27, 8, 1 188, 187, 113, 44, 10, 1 731, 730, 468, 212, 65, 12, 1 2950, 2949, 1956, 970, 355, 90, 14, 1 12235, 12234, 8291, 4356, 1785, 550, 119, 16, 1 Production matrix begins 2, 1 1, 2, 1 1, 1, 2, 1 1, 1, 1, 2, 1 1, 1, 1, 1, 2, 1 1, 1, 1, 1, 1, 2, 1 1, 1, 1, 1, 1, 1, 2, 1 ... - Philippe Deléham, Mar 01 2013 MAPLE T := (n, k) -> binomial(n, k)*hypergeom([k/2+1/2, k/2+1, k-n], [k+1, k+2], -4); seq(print(seq(round(evalf(T(n, k), 99)), k=0..n)), n=0..8); # Peter Luschny, Sep 23 2014 # Alternative: N:= 12: # to get the first N rows P:= Matrix(N, N, (i, j) -> binomial(i-1, j-1), shape=triangular[lower]): C:= Matrix(N, N, (i, j) -> binomial(2*i-j-1, i-j)*j/i, shape=triangular[lower]): T:= P . C: for i from 1 to N do seq(T[i, j], j=1..i) od; # Robert Israel, Sep 23 2014 MATHEMATICA Flatten[Table[Sum[Binomial[n, i]Binomial[2i-k, i-k](k+1)/(i+1), {i, k, n}], {n, 0, 100}, {k, 0, n}]] (* Emanuele Munarini, May 18 2011 *) PROG (Maxima) create_list(sum(binomial(n, i)*binomial(2*i-k, i-k)*(k+1)/(i+1), i, k, n), n, 0, 12, k, 0, n); /* Emanuele Munarini, May 18 2011 */ CROSSREFS T = A007318 * A033184. Left-hand columns include A007317, A007317 - 1. Row sums are in A002212. Sequence in context: A126181 A362924 A154930 * A137650 A363732 A171515 Adjacent sequences: A104256 A104257 A104258 * A104260 A104261 A104262 KEYWORD nonn,tabl AUTHOR Ralf Stephan, Mar 17 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 24 05:18 EDT 2024. Contains 374575 sequences. (Running on oeis4.)