OFFSET
1,5
COMMENTS
Row sums = A082951: (1, 1, 4, 13, 51, 197, ...).
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275
FORMULA
A054525 * A008277 as infinite lower triangular matrices. A054525 = Mobius transform, A008277 = Stirling2 triangle.
T(n,k) = Sum{d|n} mu(n/d) * Stirling2(d, k). - Andrew Howroyd, Aug 09 2018
EXAMPLE
First few rows of the triangle are:
1;
0, 1;
0, 3, 1;
0, 6, 6, 1;
0, 15, 25, 10, 1;
0, 27, 89, 65, 15, 1;
0, 63, 301, 350, 140, 21, 1;
0, 120, 960, 1700, 1050, 266, 28, 1;
...
From Andrew Howroyd, Apr 03 2017: (Start)
Primitive word structures are:
n=1: a => 1
n=2: ab => 1
n=3: aab, aba, abb; abc => 3 + 1
n=4: aaab, aaba, aabb, abaa, abba, abbb => 6 (k=2)
aabc, abac, abbc, abca, abcb, abcc => 6 (k=3)
(End)
MATHEMATICA
rows = 10; t[n_, k_] := If[Divisible[n, k], MoebiusMu[n/k], 0]; A054525 = Array[t, {rows, rows}]; A008277 = Array[StirlingS2, {rows, rows}]; T = A054525 . A008277; Table[T[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-François Alcover, Oct 07 2017 *)
PROG
(PARI) T(n, k)={sumdiv(n, d, moebius(n/d)*stirling(d, k, 2))} \\ Andrew Howroyd, Aug 09 2018
(Sage) # uses[DivisorTriangle from A327029]
# Computes an additional column (1, 0, 0, ...)
# at the left hand side of the triangle.
DivisorTriangle(moebius, stirling_number2, 10) # Peter Luschny, Aug 24 2019
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Feb 01 2008
EXTENSIONS
Name changed and a(46)-a(66) from Andrew Howroyd, Aug 09 2018
STATUS
approved