OFFSET
0,5
COMMENTS
T is the convolution triangle of the number of plane partitions (A000219). - Peter Luschny, Oct 19 2022
LINKS
Alois P. Heinz, Rows n = 0..140, flattened
FORMULA
T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A255961(n,k-i).
G.f. of column k: (-1 + Product_{j>=1} 1 / (1 - x^j)^j)^k.
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
0, 3, 1;
0, 6, 6, 1;
0, 13, 21, 9, 1;
0, 24, 62, 45, 12, 1;
0, 48, 162, 174, 78, 15, 1;
0, 86, 396, 576, 376, 120, 18, 1;
0, 160, 917, 1719, 1509, 695, 171, 21, 1;
0, 282, 2036, 4761, 5340, 3285, 1158, 231, 24, 1;
...
MAPLE
A:= proc(n, k) option remember; `if`(n=0, 1, k*add(
A(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
end:
T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..12);
# Uses function PMatrix from A357368.
PMatrix(10, A000219); # Peter Luschny, Oct 19 2022
MATHEMATICA
A[n_, k_] := A[n, k] = If[n==0, 1, k*Sum[A[n-j, k]*DivisorSigma[2, j], {j, 1, n}]/n];
T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}];
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 21 2017, translated from Maple *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, May 03 2015
STATUS
approved