login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257673
Triangle T(n,k), n>=0, 0<=k<=n, read by rows: row n is the inverse binomial transform of the n-th row of array A255961, which has the Euler transform of (j->j*k) in column k.
13
1, 0, 1, 0, 3, 1, 0, 6, 6, 1, 0, 13, 21, 9, 1, 0, 24, 62, 45, 12, 1, 0, 48, 162, 174, 78, 15, 1, 0, 86, 396, 576, 376, 120, 18, 1, 0, 160, 917, 1719, 1509, 695, 171, 21, 1, 0, 282, 2036, 4761, 5340, 3285, 1158, 231, 24, 1, 0, 500, 4380, 12441, 17234, 13473, 6309, 1792, 300, 27, 1
OFFSET
0,5
COMMENTS
T is the convolution triangle of the number of plane partitions (A000219). - Peter Luschny, Oct 19 2022
LINKS
FORMULA
T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A255961(n,k-i).
G.f. of column k: (-1 + Product_{j>=1} 1 / (1 - x^j)^j)^k.
EXAMPLE
Triangle T(n,k) begins:
1;
0, 1;
0, 3, 1;
0, 6, 6, 1;
0, 13, 21, 9, 1;
0, 24, 62, 45, 12, 1;
0, 48, 162, 174, 78, 15, 1;
0, 86, 396, 576, 376, 120, 18, 1;
0, 160, 917, 1719, 1509, 695, 171, 21, 1;
0, 282, 2036, 4761, 5340, 3285, 1158, 231, 24, 1;
...
MAPLE
A:= proc(n, k) option remember; `if`(n=0, 1, k*add(
A(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
end:
T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k):
seq(seq(T(n, k), k=0..n), n=0..12);
# Uses function PMatrix from A357368.
PMatrix(10, A000219); # Peter Luschny, Oct 19 2022
MATHEMATICA
A[n_, k_] := A[n, k] = If[n==0, 1, k*Sum[A[n-j, k]*DivisorSigma[2, j], {j, 1, n}]/n];
T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}];
Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 21 2017, translated from Maple *)
CROSSREFS
Columns k=0-10 give: A000007, A000219 (for n>0), A321947, A321948, A321949, A321950, A321951, A321952, A321953, A321954, A321955.
Main diagonal and lower diagonals give: A000012, A008585, A081266.
Row sums give A257674.
T(2n,n) give A257675.
Cf. A255961.
Sequence in context: A206294 A058150 A058151 * A137651 A248826 A058152
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, May 03 2015
STATUS
approved