The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A257673 Triangle T(n,k), n>=0, 0<=k<=n, read by rows: row n is the inverse binomial transform of the n-th row of array A255961, which has the Euler transform of (j->j*k) in column k. 13
 1, 0, 1, 0, 3, 1, 0, 6, 6, 1, 0, 13, 21, 9, 1, 0, 24, 62, 45, 12, 1, 0, 48, 162, 174, 78, 15, 1, 0, 86, 396, 576, 376, 120, 18, 1, 0, 160, 917, 1719, 1509, 695, 171, 21, 1, 0, 282, 2036, 4761, 5340, 3285, 1158, 231, 24, 1, 0, 500, 4380, 12441, 17234, 13473, 6309, 1792, 300, 27, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 LINKS Alois P. Heinz, Rows n = 0..140, flattened FORMULA T(n,k) = Sum_{i=0..k} (-1)^i * C(k,i) * A255961(n,k-i). G.f. of column k: (-1 + Product_{j>=1} 1 / (1 - x^j)^j)^k. EXAMPLE Triangle T(n,k) begins:   1;   0,   1;   0,   3,    1;   0,   6,    6,    1;   0,  13,   21,    9,    1;   0,  24,   62,   45,   12,    1;   0,  48,  162,  174,   78,   15,    1;   0,  86,  396,  576,  376,  120,   18,   1;   0, 160,  917, 1719, 1509,  695,  171,  21,  1;   0, 282, 2036, 4761, 5340, 3285, 1158, 231, 24, 1;   ... MAPLE A:= proc(n, k) option remember; `if`(n=0, 1, k*add(       A(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)     end: T:= (n, k)-> add(A(n, k-i)*(-1)^i*binomial(k, i), i=0..k): seq(seq(T(n, k), k=0..n), n=0..12); MATHEMATICA A[n_, k_] := A[n, k] = If[n==0, 1, k*Sum[A[n-j, k]*DivisorSigma[2, j], {j, 1, n}]/n]; T[n_, k_] := Sum[A[n, k-i]*(-1)^i*Binomial[k, i], {i, 0, k}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Mar 21 2017, translated from Maple *) CROSSREFS Columns k=0-10 give: A000007, A000219 (for n>0), A321947, A321948, A321949, A321950, A321951, A321952, A321953, A321954, A321955. Main diagonal and lower diagonals give: A000012, A008585, A081266. Row sums give A257674. T(2n,n) give A257675. Cf. A255961. Sequence in context: A206294 A058150 A058151 * A137651 A248826 A058152 Adjacent sequences:  A257670 A257671 A257672 * A257674 A257675 A257676 KEYWORD nonn,tabl AUTHOR Alois P. Heinz, May 03 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 1 05:04 EDT 2021. Contains 346384 sequences. (Running on oeis4.)