login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257675
a(n) = A257673(2n,n).
3
1, 3, 21, 174, 1509, 13473, 122580, 1129999, 10518477, 98644395, 930607321, 8821717743, 83960385396, 801783097911, 7678690148647, 73721697254874, 709323064431597, 6837868454315828, 66028546945097793, 638555320797561440, 6183787002091288969, 59957399899953193063
OFFSET
0,2
LINKS
FORMULA
a(n) = A257673(2n,n).
a(n) ~ c * d^n / sqrt(n), where d = 9.93288639318036180192949205242384178223421389697248991016311001938239..., c = 0.31807008223273549425589833682845775837952038959... . - Vaclav Kotesovec, May 19 2015
a(n) = [x^(2*n)] (-1 + Product_{k>=1} 1 / (1 - x^k)^k)^n. - Ilya Gutkovskiy, Feb 13 2021
MAPLE
g:= proc(n) option remember; `if`(n=0, 1, add(
g(n-j)*numtheory[sigma][2](j), j=1..n)/n)
end:
b:= proc(n, k) option remember; `if`(k<2, g(n+1), (q->
add(b(j, q)*b(n-j, k-q), j=0..n))(iquo(k, 2)))
end:
a:= n-> b(n$2):
seq(a(n), n=0..22);
MATHEMATICA
g[n_] := g[n] = If[n == 0, 1, Sum[g[n - j]*
DivisorSigma[2, j], {j, 1, n}]/n];
b[n_, k_] := b[n, k] = If[k < 2, g[n+1], With[{q = Quotient[k, 2]},
Sum[b[j, q] b[n - j, k - q], {j, 0, n}]]];
a[n_] := b[n, n];
Table[a[n], {n, 0, 22}] (* Jean-François Alcover, Aug 23 2021, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A228923 A287995 A379086 * A372108 A195105 A285272
KEYWORD
nonn
AUTHOR
Alois P. Heinz, May 03 2015
STATUS
approved