OFFSET
1,2
COMMENTS
The e.g.f. sqrt(cos(t)^6 + sin(t)^6) gives the distance from the origin to a point on the astroid (a 4-cusped hypocycloid) given by x^(2/3) + y^(2/3) = 1, using the parametric equations x = cos(t)^3 and y = sin(t)^3.
EXAMPLE
E.g.f.: A(x) = 1 - 3*x^2/2! + 21*x^4/4! + 177*x^6/6! + 11721*x^8/8! +...
where A(x)^2 = cos(x)^6 + sin(x)^6, which begins:
A(x)^2 = 1 - 6*x^2/2! + 96*x^4/4! - 1536*x^6/6! + 24576*x^8/8! +...
MATHEMATICA
With[{nn=30}, Take[CoefficientList[Series[Sqrt[Cos[x]^6+Sin[x]^6], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Jul 31 2020 *)
PROG
(PARI) {a(n)=local(X=x+x*O(x^(2*n))); n=2*n; n!*polcoeff(sqrt(cos(X)^6+sin(X)^6), n)}
CROSSREFS
KEYWORD
sign
AUTHOR
Paul D. Hanna, Sep 09 2011
STATUS
approved