login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A369941
Expansion of e.g.f. exp(x^2/(2 * sqrt(1-2*x))).
0
1, 0, 1, 3, 21, 180, 1950, 25200, 378105, 6452460, 123337620, 2609352900, 60515126595, 1526350635810, 41593384352520, 1217650295862000, 38109761157092625, 1269767021491168200, 44871119612057138400, 1676214082334522530800
OFFSET
0,4
FORMULA
a(n) = n! * Sum_{k=0..floor(n/2)} 2^(n-3*k) * binomial(n-1-3*k/2,n-2*k)/k!.
From Vaclav Kotesovec, Feb 20 2024: (Start)
Recurrence (for n>9): 4*(n-9)*(n-2)*a(n) = 12*(n-1)*(2*n^2 - 23*n + 48)*a(n-1) - 48*(n-2)*(n-1)*(n^2 - 12*n + 30)*a(n-2) + 16*(n-8)*(n-3)*(n-2)*(n-1)*(2*n - 9)*a(n-3) + 4*(n-9)*(n-3)*(n-2)*(n-1)*a(n-4) - 6*(n-4)*(n-3)*(n-2)*(n-1)*(2*n - 17)*a(n-5) + 9*(n-8)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-6).
a(n) ~ 2^(n - 5/6) * exp(3*2^(-8/3)*n^(1/3) - n) * n^(n - 1/3) / sqrt(3) * (1 - 7*2^(2/3)/(128*n^(1/3))). (End)
MATHEMATICA
Flatten[{{1, 0, 1, 3}, RecurrenceTable[{-9 (-8 + n) (-5 + n) (-4 + n) (-3 + n) (-2 + n) (-1 + n) a[-6 + n] + 6 (-4 + n) (-3 + n) (-2 + n) (-1 + n) (-17 + 2 n) a[-5 + n] - 4 (-9 + n) (-3 + n) (-2 + n) (-1 + n) a[-4 + n] - 16 (-8 + n) (-3 + n) (-2 + n) (-1 + n) (-9 + 2 n) a[-3 + n] + 48 (-2 + n) (-1 + n) (30 - 12 n + n^2) a[-2 + n] - 12 (-1 + n) (48 - 23 n + 2 n^2) a[-1 + n] + 4 (-9 + n) (-2 + n) a[n] == 0, a[4] == 21, a[5] == 180, a[6] == 1950, a[7] == 25200, a[8] == 378105, a[9] == 6452460}, a, {n, 4, 20}]}] (* Vaclav Kotesovec, Feb 19 2024 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x^2/(2*sqrt(1-2*x)))))
CROSSREFS
Cf. A362204.
Sequence in context: A195105 A285272 A295541 * A192946 A216171 A054879
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Feb 06 2024
STATUS
approved