login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A362204
Expansion of e.g.f. exp(x/sqrt(1-2*x)).
1
1, 1, 3, 16, 121, 1176, 13921, 193978, 3106881, 56201176, 1132709041, 25162197006, 610668537073, 16073212005436, 455980333073721, 13868451147012946, 450140785396634881, 15529495879187075088, 567427732311438658081, 21889446540911251445206
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..n} (-2)^k * binomial(-(n-k)/2,k)/(n-k)! = n! * Sum_{k=0..n} 2^(n-k) * binomial(n-k/2-1,n-k)/k!.
From Vaclav Kotesovec, Feb 20 2024: (Start)
a(n) ~ 3^(-1/2) * 2^(n - 1/6) * exp(3*2^(-4/3)*n^(1/3) - n) * n^(n - 1/3) * (1 - 3/(16*(n/2)^(1/3))).
Recurrence (for n>5): (n-5)*a(n) = 3*(2*n^2 - 13*n + 16)*a(n-1) - (12*n^3 - 108*n^2 + 299*n - 259)*a(n-2) + (n-2)*(8*n^3 - 84*n^2 + 290*n - 327)*a(n-3) + (n-4)*(n-3)*(n-2)*a(n-4). (End)
MATHEMATICA
Table[n! * Sum[2^(n-k) * Binomial[n-k/2-1, n-k]/k!, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 20 2024 *)
Join[{1, 1}, RecurrenceTable[{(-4 + n) (-3 + n) (-2 + n) a[-4 + n] + (-2 + n) (-327 + 290 n - 84 n^2 + 8 n^3) a[-3 + n] + (259 - 299 n + 108 n^2 - 12 n^3) a[-2 + n] + 3 (16 - 13 n + 2 n^2) a[-1 + n] + (5 - n) a[n] == 0, a[2] == 3, a[3] == 16, a[4] == 121, a[5] == 1176}, a, {n, 2, 20}]] (* Vaclav Kotesovec, Feb 20 2024 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/sqrt(1-2*x))))
CROSSREFS
Sequence in context: A166883 A145158 A132070 * A121629 A351218 A200793
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Apr 11 2023
STATUS
approved