|
|
A121629
|
|
Finite sum involving signless Stirling numbers of the first kind and the Bell numbers. Appears in the process of normal ordering of n-th power of (a)^2*(a+*a), where a+ and a are boson creation and annihilation operators, respectively.
|
|
5
|
|
|
1, 3, 16, 121, 1179, 14026, 196783, 3177861, 58019356, 1181098459, 26515026561, 650572403218, 17316566815441, 496889918749251, 15288155067806104, 502024850361876481, 17522822345606176083, 647790109599863145106, 25283238154309049107231
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..350
K. A. Penson, P. Blasiak, A. Horzela, G. H. E. Duchamp and A. I. Solomon, Laguerre-type derivatives: Dobinski relations and combinatorial identities, J. Math. Phys. vol. 50, 083512 (2009)
|
|
FORMULA
|
a(n) = Sum_{p=1..n+1} abs(stirling1(n+1,p))*2^(n-p+1)*bell(p-1), n=0,1...
E.g.f.: exp(((1-2*x)^(-1/2))-1)/(1-2*x). - Vladeta Jovovic, Aug 13 2006
Recurrence: a(n) = (6*n-5)*a(n-1) - (2*n-3)*(6*n-7)*a(n-2) + 4*(2*n-3)*(n-2)^2*a(n-3). - Vaclav Kotesovec, Jun 29 2013
a(n) ~ 2^(n+5/6)*exp(3/2*(2*n)^(1/3)-1-n)*n^(n+1/3)/sqrt(3). - Vaclav Kotesovec, Jun 29 2013
|
|
MATHEMATICA
|
CoefficientList[Series[E^(((1-2*x)^(-1/2))-1)/(1-2*x), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 29 2013 *)
|
|
PROG
|
(PARI) x='x+O('x^30); Vec(serlaplace(exp(((1-2*x)^(-1/2))-1)/(1-2*x))) \\ G. C. Greubel, May 17 2018
(Magma) m:=25; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!(Exp(((1-2*x)^(-1/2))-1)/(1-2*x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, May 17 2018
|
|
CROSSREFS
|
Cf. A002720, A121630, A121631, A239301.
Sequence in context: A166883 A145158 A132070 * A351218 A200793 A141625
Adjacent sequences: A121626 A121627 A121628 * A121630 A121631 A121632
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Karol A. Penson, Aug 12 2006
|
|
EXTENSIONS
|
Terms a(17) onward added by G. C. Greubel, May 17 2018
|
|
STATUS
|
approved
|
|
|
|