login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239301
E.g.f.: exp((1-5*x)^(-1/5)-1)/(1-5*x).
3
1, 6, 67, 1090, 23265, 614302, 19323163, 705288522, 29296813825, 1364468928022, 70414831288275, 3987980655931570, 245910243177940897, 16399345182278307822, 1176033825828643912747, 90242683036826223141370, 7377887848681408224106497, 640225878087732419052020134
OFFSET
0,2
COMMENTS
Generally, for e.g.f.: exp((1-p*x)^(-1/p)-1)/(1-p*x), and p>1, we have a(n) ~ 1/sqrt(p+1) * p^(n+(2*p+1)/(2*p+2)) * exp((p+1)*p^(-p/(p+1)) *n^(1/(p+1))-n-1) * n^(n+p/(2*p+2)).
FORMULA
a(n) = 5*(6*n - 13)*a(n-1) - 5*(75*n^2 - 400*n + 557)*a(n-2) + 50*(50*n^3 - 475*n^2 + 1539*n - 1698)*a(n-3) - (9375*n^4 - 137500*n^3 + 764625*n^2 - 1910000*n + 1807524)*a(n-4) + (18750*n^5 - 390625*n^4 + 3267500*n^3 - 13716875*n^2 + 28896490*n - 24436079)*a(n-5) - 25*(n-5)^2*(5*n - 24)*(5*n - 23)*(5*n - 22)*(5*n - 21)*a(n-6).
a(n) ~ 1/sqrt(6) * 5^(n+11/12) * exp(6*5^(-5/6)*n^(1/6)-n-1) * n^(n+5/12).
MATHEMATICA
CoefficientList[Series[E^((1-5*x)^(-1/5)-1)/(1-5*x), {x, 0, 20}], x]*Range[0, 20]!
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 14 2014
STATUS
approved