login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A351218
a(n) = Sum_{k=0..n} (-k)^k * Stirling2(n,k).
3
1, -1, 3, -16, 121, -1181, 14114, -199543, 3257139, -60279214, 1247164055, -28525394481, 714681439212, -19465007759913, 572609747089735, -18093710202583480, 611202186074834221, -21979340746682042249, 838330656532184312218, -33803668628843391999843
OFFSET
0,3
LINKS
Eric Weisstein's World of Mathematics, Lambert W-Function.
FORMULA
E.g.f.: 1/(1 + LambertW(exp(x) - 1)), where LambertW() is the Lambert W-function.
a(n) ~ (-1)^n * n^n / (sqrt(exp(1)-1) * (1 - log(exp(1)-1))^(n + 1/2) * exp(n)). - Vaclav Kotesovec, Feb 05 2022
MAPLE
b:= proc(n, m) option remember; `if`(n=0,
(-m)^m, m*b(n-1, m)+b(n-1, m+1))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..20); # Alois P. Heinz, Jul 17 2022
MATHEMATICA
Table[Sum[(-1)^k * k^k * StirlingS2[n, k], {k, 1, n}], {n, 0, 20}] (* Vaclav Kotesovec, Feb 05 2022 *)
PROG
(PARI) a(n) = sum(k=0, n, (-k)^k*stirling(n, k, 2));
(PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1+lambertw(exp(x)-1))))
CROSSREFS
Sequence in context: A132070 A362204 A121629 * A200793 A141625 A053588
KEYWORD
sign
AUTHOR
Seiichi Manyama, Feb 05 2022
STATUS
approved