login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = Sum_{k=0..n} (-k)^k * Stirling2(n,k).
3

%I #17 Jul 17 2022 09:02:26

%S 1,-1,3,-16,121,-1181,14114,-199543,3257139,-60279214,1247164055,

%T -28525394481,714681439212,-19465007759913,572609747089735,

%U -18093710202583480,611202186074834221,-21979340746682042249,838330656532184312218,-33803668628843391999843

%N a(n) = Sum_{k=0..n} (-k)^k * Stirling2(n,k).

%H Alois P. Heinz, <a href="/A351218/b351218.txt">Table of n, a(n) for n = 0..400</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.

%F E.g.f.: 1/(1 + LambertW(exp(x) - 1)), where LambertW() is the Lambert W-function.

%F a(n) ~ (-1)^n * n^n / (sqrt(exp(1)-1) * (1 - log(exp(1)-1))^(n + 1/2) * exp(n)). - _Vaclav Kotesovec_, Feb 05 2022

%p b:= proc(n, m) option remember; `if`(n=0,

%p (-m)^m, m*b(n-1, m)+b(n-1, m+1))

%p end:

%p a:= n-> b(n, 0):

%p seq(a(n), n=0..20); # _Alois P. Heinz_, Jul 17 2022

%t Table[Sum[(-1)^k * k^k * StirlingS2[n,k], {k,1,n}], {n,0,20}] (* _Vaclav Kotesovec_, Feb 05 2022 *)

%o (PARI) a(n) = sum(k=0, n, (-k)^k*stirling(n, k, 2));

%o (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(1/(1+lambertw(exp(x)-1))))

%Y Cf. A282190, A305981.

%K sign

%O 0,3

%A _Seiichi Manyama_, Feb 05 2022