login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A321953
Column k=8 of triangle A257673.
3
1, 24, 300, 2624, 18126, 105552, 539408, 2485016, 10518477, 41482336, 154055260, 543239064, 1830924554, 5929728456, 18534968236, 56121729792, 165117049094, 473276306552, 1324582728412, 3626879184272, 9732325392280, 25631811881168, 66342981204768
OFFSET
8,2
LINKS
FORMULA
G.f.: (-1 + Product_{k>=1} 1 / (1 - x^k)^k)^8. - Ilya Gutkovskiy, Jan 31 2021
MAPLE
b:= proc(n, k) option remember; `if`(n=0, 1, k*add(
b(n-j, k)*numtheory[sigma][2](j), j=1..n)/n)
end:
a:= n-> (k-> add(b(n, k-i)*(-1)^i*binomial(k, i), i=0..k))(8):
seq(a(n), n=8..35);
CROSSREFS
Column k=8 of A257673.
Sequence in context: A010976 A100130 A014103 * A206002 A000552 A233876
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 22 2018
STATUS
approved