The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A100130 Expansion of (eta(q) * eta(q^4) / eta(q^2)^2)^24 in powers of q. 4
 1, -24, 300, -2624, 18126, -105504, 538296, -2471424, 10400997, -40674128, 149343012, -519045888, 1718732998, -5451292992, 16633756008, -49010118656, 139877936370, -387749049720, 1046413709980, -2754808758144, 7087483527072 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700). LINKS G. C. Greubel, Table of n, a(n) for n = 1..1000 Michael Somos, Introduction to Ramanujan theta functions Eric Weisstein's World of Mathematics, Ramanujan Theta Functions FORMULA Expansion of q / chi(q)^24 in powers of q where chi() is a Ramanujan theta function. Expansion of lambda * (1 - lambda) / 16 in powers of q. Euler transform of period 4 sequence [ -24, 24, -24, 0, ...]. G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = f(t) where q = exp(2 Pi i t). G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = 4096 * (u*v)^4 + (u*v)^2 * (1791 + 2352 * (u + v) - 10496 * u*v) - u*v * (1 - 48 * (u + v) + 96 * (u^2 + v^2)) + u^3 + v^3. G.f.: x * (Product_{k>0} (1 + (-x)^k))^24 = x / (Product_{k>0} (1 + x^(2*k - 1)))^24. a(n) = -(-1)^n * A014103(n). Convolution inverse of A097340. Series reversion of A195130. a(n) ~ -(-1)^n * exp(2*Pi*sqrt(2*n)) / (4096 * 2^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 16 2017 G.f.: x*exp(-24*Sum_{k>=1} x^k/(k*(1 - (-x)^k))). - Ilya Gutkovskiy, Jun 08 2018 EXAMPLE G.f. = q - 24*q^2 + 300*q^3 - 2624*q^4 + 18126*q^5 - 105504*q^6 + ... MATHEMATICA a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (1 - m) m / 16, {q, 0, n}]]; a[ n_] := SeriesCoefficient[ q / Product[ 1 + q^k, {k, 1, n, 2}]^24, {q, 0, n}]; a[ n_] := SeriesCoefficient[ q / QPochhammer[ -q, q^2]^24, {q, 0, n}]; PROG (PARI) {a(n) = polcoeff( x * prod(k=1, n, 1 + (-x)^k, 1 + x * O(x^n))^24, n)}; (PARI) {a(n) = my(A); if( n<1, 0,  n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A) / eta(x^2 + A)^2)^24, n))}; CROSSREFS Cf. A014103, A097340, A195130. Sequence in context: A056285 A162686 A010976 * A014103 A321953 A206002 Adjacent sequences:  A100127 A100128 A100129 * A100131 A100132 A100133 KEYWORD sign AUTHOR Michael Somos, Nov 06 2004 EXTENSIONS Swapped a formula with definition to make this clearer. - N. J. A. Sloane, Nov 26 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 18 06:55 EDT 2021. Contains 347510 sequences. (Running on oeis4.)