OFFSET
1,2
COMMENTS
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..1000
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q / chi(q)^24 in powers of q where chi() is a Ramanujan theta function.
Expansion of lambda * (1 - lambda) / 16 in powers of q.
Euler transform of period 4 sequence [ -24, 24, -24, 0, ...].
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = f(t) where q = exp(2 Pi i t).
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = 4096 * (u*v)^4 + (u*v)^2 * (1791 + 2352 * (u + v) - 10496 * u*v) - u*v * (1 - 48 * (u + v) + 96 * (u^2 + v^2)) + u^3 + v^3.
G.f.: x * (Product_{k>0} (1 + (-x)^k))^24 = x / (Product_{k>0} (1 + x^(2*k - 1)))^24.
a(n) ~ -(-1)^n * exp(2*Pi*sqrt(2*n)) / (4096 * 2^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 16 2017
G.f.: x*exp(-24*Sum_{k>=1} x^k/(k*(1 - (-x)^k))). - Ilya Gutkovskiy, Jun 08 2018
EXAMPLE
G.f. = q - 24*q^2 + 300*q^3 - 2624*q^4 + 18126*q^5 - 105504*q^6 + ...
MATHEMATICA
a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ (1 - m) m / 16, {q, 0, n}]];
a[ n_] := SeriesCoefficient[ q / Product[ 1 + q^k, {k, 1, n, 2}]^24, {q, 0, n}];
a[ n_] := SeriesCoefficient[ q / QPochhammer[ -q, q^2]^24, {q, 0, n}];
PROG
(PARI) {a(n) = polcoeff( x * prod(k=1, n, 1 + (-x)^k, 1 + x * O(x^n))^24, n)};
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A) / eta(x^2 + A)^2)^24, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Nov 06 2004
EXTENSIONS
Swapped a formula with definition to make this clearer. - N. J. A. Sloane, Nov 26 2018
STATUS
approved