OFFSET
0,2
COMMENTS
Binomial transform of 1,1,1,1,4,4,10,10,28,28,76,... (g.f. (1-x)(1+x)^2/(1-2x^2-2x^4)).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (4,-4,0,3)
FORMULA
G.f.: (1-2x)/((1-2x)^2-3x^4).
a(n) = 4*a(n-1) - 4*a(n-2) + 3*a(n-4). [corrected by Kevin Ryde, Feb 02 2023]
PROG
(PARI) a(n) = sum(k=0, n\4, binomial(n-2*k, 2*k) * 3^k * 2^(n-4*k)); \\ Michel Marcus, Oct 09 2021
(PARI) my(p=Mod('x, 'x^4-4*'x^3+4*'x^2-3)); a(n) = subst(lift(p^n), 'x, 2); \\ Kevin Ryde, Feb 02 2023
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Nov 06 2004
STATUS
approved