OFFSET
0,4
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..932
FORMULA
G.f. A(x) satisfies: A(x) = 1 + (x/(1-x^2)) * A(x/(1-x^2)).
EXAMPLE
Eigensequence for number triangle
1;
1, 0;
0, 1, 0;
1, 0, 1, 0;
0, 2, 0, 1, 0;
1, 0, 3, 0, 1, 0;
0, 3, 0, 4, 0, 1, 0;
1, 0, 6, 0, 5, 0, 1, 0;
0, 4, 0, 10, 0, 6, 0, 1, 0;
1, 0, 10, 0, 15, 0, 7, 0, 1, 0;
0, 5, 0, 20, 0, 21, 0, 8, 0, 1, 0;
(augmented version of Riordan array (1/(1-x^2), x/(1-x^2)), A030528.
MAPLE
A172383 := proc(n)
option remember;
if n = 0 then
1;
else
add(binomial(n-k-1, k)*procname(n-1-2*k), k=0..floor((n-1)/2)) ;
end if;
end proc:
seq(A172383(n), n=0..20) ; # R. J. Mathar, Feb 11 2015
MATHEMATICA
a[n_]:= If[n == 0, 1, Sum[Binomial[n-k-1, k]*a[n-2*k-1], {k, 0, Floor[(n-1)/2]}]]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Oct 07 2018 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 01 2010
EXTENSIONS
Name corrected by R. J. Mathar, Feb 11 2015
STATUS
approved