login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172383
a(0)=1, otherwise a(n) = Sum_{k=0..floor((n-1)/2)} binomial(n-k-1,k)*a(n-1-2*k).
5
1, 1, 1, 2, 4, 8, 19, 46, 118, 322, 903, 2653, 8053, 25194, 81387, 269667, 917529, 3197480, 11393821, 41497060, 154186653, 584151512, 2254240317, 8852998343, 35361762709, 143540660088, 591802631729, 2476701062087
OFFSET
0,4
LINKS
FORMULA
G.f. A(x) satisfies: A(x) = 1 + (x/(1-x^2)) * A(x/(1-x^2)).
EXAMPLE
Eigensequence for number triangle
1;
1, 0;
0, 1, 0;
1, 0, 1, 0;
0, 2, 0, 1, 0;
1, 0, 3, 0, 1, 0;
0, 3, 0, 4, 0, 1, 0;
1, 0, 6, 0, 5, 0, 1, 0;
0, 4, 0, 10, 0, 6, 0, 1, 0;
1, 0, 10, 0, 15, 0, 7, 0, 1, 0;
0, 5, 0, 20, 0, 21, 0, 8, 0, 1, 0;
(augmented version of Riordan array (1/(1-x^2), x/(1-x^2)), A030528.
MAPLE
A172383 := proc(n)
option remember;
if n = 0 then
1;
else
add(binomial(n-k-1, k)*procname(n-1-2*k), k=0..floor((n-1)/2)) ;
end if;
end proc:
seq(A172383(n), n=0..20) ; # R. J. Mathar, Feb 11 2015
MATHEMATICA
a[n_]:= If[n == 0, 1, Sum[Binomial[n-k-1, k]*a[n-2*k-1], {k, 0, Floor[(n-1)/2]}]]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Oct 07 2018 *)
CROSSREFS
Cf. A030528.
Sequence in context: A151526 A099526 A005703 * A003081 A100133 A099598
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 01 2010
EXTENSIONS
Name corrected by R. J. Mathar, Feb 11 2015
STATUS
approved