login
A097340
McKay-Thompson series of class 4A for the Monster group with a(0) = 24.
14
1, 24, 276, 2048, 11202, 49152, 184024, 614400, 1881471, 5373952, 14478180, 37122048, 91231550, 216072192, 495248952, 1102430208, 2390434947, 5061476352, 10487167336, 21301241856, 42481784514, 83300614144
OFFSET
-1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
This series is also called Weber's modular function. - N. J. A. Sloane, Jun 23 2011
Or, better, it is the 24th power of Weber's modular function f(). - Michael Somos, Jan 10 2017
Given g.f. A(q), Greenhill (1895) denotes 1/64 * A(q) by tau_1 on page 409 equation (43). - Michael Somos, Jul 17 2013
REFERENCES
S. Ramanujan, Modular Equations and Approximations to Pi, pp. 23-39 of Collected Papers of Srinivasa Ramanujan, Ed. G. H. Hardy et al., AMS Chelsea 2000. See page 26.
FORMULA
Expansion of q^(-1) * chi(q)^24 where chi() is a Ramanujan theta function.
Expansion of (eta(q^2)^2 / (eta(q) * eta(q^4)))^24 in powers of q.
Euler transform of period 4 sequence [ 24, -24, 24, 0, ...].
G.f. is Fourier series of a level 4 modular function. f(-1 / (4 t)) = f(t) where q = exp(2 Pi i t).
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u*v * (u^3 + v^3) + (-u^3 + 48*u^2 - 96*u) * v^3 + (48*u^3 + 1791*u^2 + 2352*u) * v^2 + (-96*u^3 + 2352*u^2 - 10496*u) * v + 4096.
G.f. (1/q) * (Product_{k>0} (1 + q^(2k-1)))^24 = 64 * (G_n)^24 where q = e^(-Pi sqrt(n)) and G_n is a Ramanujan class invariant.
A007191(n) = -(-1)^n * a(n).
a(n) ~ exp(2*Pi*sqrt(n)) / (2 * n^(3/4)). - Vaclav Kotesovec, Aug 27 2015
From Peter Bala, Sep 25 2023: (Start)
Laurent series g.f.: A(q) = - 16*lambda(-q)/lambda(q)^2 = 1/q + 24 + 276*q + 2048*q^2 + ..., where lambda(q) = 16*q - 128*q^2 + 704*q^3 - 3072*q^4 + ... is the elliptic modular function in powers of the nome q = exp(i*Pi*t), the g.f. of A115977; lambda(q) = k(q)^2, where k(q) = (theta_2(q) / theta_3(q))^2 is the elliptic modulus.
A(q) = -16*(1 - lambda(-q))^2/lambda(-q). (End)
EXAMPLE
G.f. = 1/q + 24 + 276*q + 2048*q^2 + 11202*q^3 + 49152*q^4 + 184024*q^5 + ...
MATHEMATICA
a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ ((1 - m) m / 16)^-1, {q, 0, n}]]; (* Michael Somos, Jul 11 2011 *)
a[ n_] := SeriesCoefficient[ Product[1 + q^k, {k, 1, n + 1, 2}]^24 / q, {q, 0, n}]; (* Michael Somos, Jul 11 2011 *)
a[ n_] := SeriesCoefficient[ QPochhammer[ -q, q^2]^24 / q, {q, 0, n}]; (* Michael Somos, Nov 04 2014 *)
nmax = 50; CoefficientList[Series[Product[(1 + x^(2*k+1))^24, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 27 2015 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x^n * O(x); polcoeff( (eta(x^2 + A)^2 / (eta(x + A) * eta(x^4 + A)))^24, n))};
CROSSREFS
A007191, A007246, A045479, A035099, A097340, A107080, A134786 are all essentially the same sequence.
Sequence in context: A045854 A014809 A007191 * A222156 A297604 A001496
KEYWORD
nonn,changed
AUTHOR
Michael Somos, Aug 05 2004
STATUS
approved