OFFSET
-1,3
COMMENTS
REFERENCES
T. Gannon, Moonshine Beyond the Monster, Cambridge, 2006; see pp. 139, 424.
G. Hoehn, Selbstduale Vertexoperatorsuperalgebren und das Babymonster, Bonner Mathematische Schriften, Vol. 286 (1996), 1-85.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = -1..1000
R. E. Borcherds, Introduction to the monster Lie algebra, pp. 99-107 of M. Liebeck and J. Saxl, editors, Groups, Combinatorics and Geometry (Durham, 1990). London Math. Soc. Lect. Notes 165, Cambridge Univ. Press, 1992.
B. Brent, Quadratic Minima and Modular Forms, Experimental Mathematics, v.7 no.3, 257-274.
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
G. Hoehn (gerald(AT)math.ksu.edu), Selbstduale Vertexoperatorsuperalgebren und das Babymonster, Doctoral Dissertation, Univ. Bonn, Jul 15 1995 (pdf, ps).
J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
Michael Somos, Introduction to Ramanujan theta functions
FORMULA
Expansion of 24 + chi(-q)^24 / q in powers of q where chi() is a Ramanujan theta function.
a(n) ~ (-1)^(n+1) * exp(2*Pi*sqrt(n)) / (2*n^(3/4)). - Vaclav Kotesovec, Sep 07 2017
EXAMPLE
T2B = 1/q + 276*q - 2048*q^2 + 11202*q^3 - 49152*q^4 + 184024*q^5 - ...
MATHEMATICA
a[0] = 0; a[n_] := SeriesCoefficient[ Product[1 - q^k, {k, 1, n+1, 2}]^24/q, {q, 0, n}]; Table[a[n], {n, -1, 20}] (* Jean-François Alcover, Oct 14 2013, after Michael Somos *)
a[ n_] := SeriesCoefficient[ 24 + 1/q QPochhammer[ q, q^2]^24, {q, 0, n}]; (* Michael Somos, Jul 05 2014 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, n++; A = x * O(x^n); polcoeff( 24 * x + (eta(x + A) / eta(x^2 + A))^24, n))}; /* Michael Somos, Jul 05 2014 */
CROSSREFS
KEYWORD
sign,easy,nice
AUTHOR
STATUS
approved