login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A007248
McKay-Thompson series of class 4C for the Monster group.
(Formerly M5084)
9
1, 20, -62, 216, -641, 1636, -3778, 8248, -17277, 34664, -66878, 125312, -229252, 409676, -716420, 1230328, -2079227, 3460416, -5677816, 9198424, -14729608, 23328520, -36567242, 56774712, -87369461, 133321908, -201825396, 303248408, -452431503
OFFSET
0,2
REFERENCES
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
D. Ford, J. McKay and S. P. Norton, ``More on replicable functions,'' Commun. Algebra 22, No. 13, 5175-5193 (1994).
J. McKay and A. Sebbar, Fuchsian groups, automorphic functions and Schwarzians, Math. Ann., 318 (2000), 255-275.
McKay, John; Strauss, Hubertus. The q-series of monstrous moonshine and the decomposition of the head characters. Comm. Algebra 18 (1990), no. 1, 253-278.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
G.f.: 16*(theta_3/theta_2)^4 - 8 = 16 / lambda(z) - 8.
G.f.: 8*x^(1/2) + (Product_{k>0} (1 - x^(k/2)) / (1 - x^(2*k)))^8.
Expansion of q * ( -8 + 16 / lambda(z)) in powers of q^2 where nome q = exp(Pi i z). - Michael Somos, Nov 14 2006
Expansion of 4 * q^(1/2) * (k(q) + 1 / k(q)) in powers of q where nome q = exp(Pi i z). - Michael Somos, Nov 11 2014
Expansion of q * (8 + (eta(q) / eta(q^4))^8) in powers of q^2. - Michael Somos, Nov 14 2006
Given g.f. A(x), then B(q) = A(q^2) / q satisfies 0 = f(B(q), B(q^2)) where f(u, v) = (v + 24)^2 - (v + 8) * u^2. - Michael Somos, Nov 14 2006
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = 8 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A097243. - Michael Somos, Jul 22 2011
a(n) = A029845(2*n - 1) = A124972(2*n - 1). - Michael Somos, Nov 14 2006.
EXAMPLE
G.f. = 1 + 20*x - 62*x^2 + 216*x^3 - 641*x^4 + 1636*x^5 - 3778*x^6 + ...
T4C = 1/q + 20*q - 62*q^3 + 216*q^5 - 641*q^7 + 1636*q^9 - 3778*q^11 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 8 q + (QPochhammer[ q] / QPochhammer[ q^4])^8, {q, 0, 2 n}]; (* Michael Somos, Jul 22 2011 *)
a[ n_] := With[ {m = InverseEllipticNomeQ @ q}, SeriesCoefficient[ -8 + 16 / m, {q, 0, 2 n - 1}]]; (* Michael Somos, Jul 22 2011 *)
a[ n_] := SeriesCoefficient[ -8 + 16 (EllipticTheta[ 3, 0, q] / EllipticTheta[ 2, 0, q])^4, {q, 0, 2 n - 1}]; (* Michael Somos, Jul 22 2011 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, n*=2; A = x * O(x^n); polcoeff( 8*x + (eta(x + A) / eta(x^4 + A))^8, n))}; /* Michael Somos, Nov 14 2006 */
CROSSREFS
KEYWORD
sign,easy
STATUS
approved