

A182468


Numbers k such that the equation x^2  k*y^4 = 1 has a solution for which y > 2.


1



20, 63, 65, 79, 83, 156, 183, 254, 258, 285, 320, 323, 325, 328, 505, 573, 579, 600, 623, 627, 723, 735, 791, 994, 1020, 1023, 1025
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

Williams, H. C. and Zarnke, C. R., Computation of the solutions of the Diophantine equation x^2dy^4=1. Proceedings of the Third Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1972), pp. 463483. Florida Atlantic Univ., Boca Raton, Fla., 1972.


LINKS



CROSSREFS



KEYWORD

nonn,more


AUTHOR



EXTENSIONS



STATUS

approved



