login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097341
a(n) = Sum_{k=0..floor(n/2)} Stirling2(n-k,k) * 2^k.
7
1, 0, 2, 2, 6, 14, 38, 110, 342, 1134, 3990, 14830, 58006, 237998, 1021462, 4574318, 21325462, 103287598, 518768406, 2697426926, 14498316182, 80440333998, 460112203798, 2710038058862, 16418576767126, 102212840258094, 653247225514262, 4282249051881198
OFFSET
0,3
LINKS
FORMULA
a(n)=sum{k=0..floor(n/2), sum{i=0..k, (-1)^(k+i)i^(n-k)/(i!(k-i)!)}2^k }
G.f.: Sum_{k>=0} 2^k * x^(2*k)/Product_{j=1..k} (1 - j * x). - Seiichi Manyama, Apr 09 2022
PROG
(PARI) my(N=40, x='x+O('x^N)); Vec(sum(k=0, N, 2^k*x^(2*k)/prod(j=1, k, 1-j*x))) \\ Seiichi Manyama, Apr 09 2022
(PARI) a(n) = sum(k=0, n\2, 2^k*stirling(n-k, k, 2)); \\ Seiichi Manyama, Apr 09 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Aug 05 2004
STATUS
approved